
AFRL-RV-PS- STINFO COPY AFRL-RV-PS-
TR-2007

-1209 TR-2007-1209

Polymorphous Computing Architectures

Mark Horowitz

Stanford University
Gates 306, 353 Serra Mall
Stanford, CA 94305-9030

12 December 2007

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate
3550 Aberdeen Ave SE
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the Air Force Research Laboratory/RV Public
Affairs Office and is available to the general public, including foreign nationals. Copies may
be obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RV-PS-TR-2007-1209 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

 //signed// //signed//
__ _______________________________________
JEFFREY B. SCOTT, 2d Lt USAF JOHN P. BEAUCHEMIN, Lt Col, USAF
Program Manager Deputy Chief, Spacecraft Technology Division
 Space Vehicles Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

 i

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
12/12/2007

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
13/03/2003 to 12/12/2007

4. TITLE AND SUBTITLE
Polymorphous Computing Architectures

5a. CONTRACT NUMBER
F29601-03-2-0117

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62712E; 62716E

6. AUTHOR(S)
Mark Horowitz

5d. PROJECT NUMBER
ARPA

5e. TASK NUMBER
SC

5f. WORK UNIT NUMBER
AC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

Stanford University
Gates 306, 353 Serra Mall
Stanford, CA 94305-9030

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory AFRL/RVSE
Space Vehicles Directorate
3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT
Kirtland AFB, NM 87117-5776 NUMBER(S)
 AFRL-RV-PS-TR-2007-1209
12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited. (Clearance #RV08-0006).

13. SUPPLEMENTARY NOTES
.
.
14. ABSTRACT

We describe the architecture and hardware implementation of a coarse grain parallel computing system with flexibility in both memory and
processing elements. The memory subsystem supports a wide range of programming models efficiently, including cache coherency,
message passing, streaming, and transactions. The memory controller implements these models using metadata stored with each memory
block. Processor flexibility is provided using Tensilica Xtensa cores. We use Xtensa processor options and Tensilica Instruction Extension
language (TIE) to provide additional computational capabilities, to define additional memory operations needed to support our controller,
and to add VLIW instructions for increased efficiency. In our implementation, two processors share multiple memory blocks via a
load/store unit and a crossbar switch. These dual processor tiles are grouped into quads that share a memory protocol controller. Quads
connect to one another and to the off-chip memory controller via a mesh-like network. We describe the design of each block in detail. We
also describe our implementation of transactional memory. Transactional Coherence and Consistency (TCC) provides greater scalability
than previous TM architectures by deferring conflict detection until commit time and by using directories to reduce overhead. We
demonstrate near linear scaling up to 64 processors with less than 5% overhead.

15. SUBJECT TERMS
Polymorphic, Reconfigurable, Parallel Programming, Thread Programming, Stream Programming
16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
2d Lt Jeffrey B. Scott

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

Unlimited

95

19b. TELEPHONE NUMBER (include area
code)
(505) 846-6280

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

ii

Table of Contents

Table of Contents... iii

Figures... vi

1 Introduction ..1

1.1 Cache-Coherent Shared Memory Model ..2

1.2 Streaming Memory Model...3

1.3 Transactional Memory Model ...5

1.4 Memory System Features...7

2 Smart Memories Implementation ...9

2.1 Memory System Protocols..10

2.1.1 Coherence protocol ...10

2.1.2 Transactional Coherence and Consistency12

2.1.3 Fast, fine-grain synchronization protocol14

2.2 Processor ...17

2.2.1 Overview of Tensilica LX ...17

2.2.2 Interfacing Tensilica processor to Smart Memories.......................19

2.2.3 Special Memory Access Instructions ...23

2.2.4 Pre-Defined and VLIW Processor Extensions25

2.2.5 Processor Extension for Recovery from Missed Speculation25

2.3 Memory Mat and Crossbar ...26

2.3.1 Memory mat organization ..27

2.3.2 Data Array ...27

2.3.3 Control Array ...29

2.3.4 PLA block ..32

 Page iii

2.3.5 Pointer logic...32

2.3.6 Guard and Condition Logic..33

2.3.7 Crossbar and Inter-Mat Communication Network (IMCN)34

2.3.8 Examples...36

2.4 Load/Store Unit (LSU) ..40

2.4.1 Interfaces...40

2.4.2 Tile memory configuration ...41

2.4.3 Memory map and address translation ...42

2.4.4 Access translation ...45

2.4.5 Communication with protocol controller...48

2.5 Reconfigurable Protocol Controller...50

2.5.1 Architecture ...50

2.5.2 Request tracking and serialization (T-Unit)....................................52

2.5.3 State Updates (S-Unit) ..53

2.5.4 Data Movements (D-Unit)..54

2.5.5 Interfaces...56

2.5.6 Peripherals ..57

2.5.7 Example: MESI coherence ..58

2.6 Communication Network...62

2.6.1 Packets and flow control..62

2.6.2 Virtual channels ...65

2.6.3 Broadcast / Multicast over network..66

2.7 Memory Controller ..67

2.7.1 Architecture ...67

2.7.2 C-Req / C-Rep units ..68

 Page iv

2.7.3 U-Req/Rep unit..69

2.7.4 Sync unit..69

2.7.5 Interfaces...70

3 Transactional Coherence and Consistency ...71

3.1 Scalable TCC Architecture ...71

3.2 Virtualizing Transactional Memory Hardware72

3.3 Hardware/Software Interface for Transactional Memory73

3.4 High Level Programming with Transactional Memory75

4 References ..78

 Page v

Figures

Figure 1 Smart Memories Architecture ...9

Figure 2 Steps in enforcing coherence ...11

Figure 3 Steps for committing transactions write set...14

Figure 4 Steps in enforcing coherence ..16

Figure 5 Xtensa Interfaces..19

Figure 6 Processor Interfaces to Smart Memories..20

Figure 7 Processor Pipeline..21

Figure 8 Memory operation pipeline: a) without interlocks; b) with interlocks22

Figure 9 Processor and Tile Pipeline ...23

Figure 10 Major Blocks of the Memory Mat ..27

Figure 11 Data array. Solid lines are mat input/output signals while dashed lines
are internal control signals ..28

Figure 12 Control array. Solid lines are mat input/output signals while dashed
lines are internal signals generated inside mat ...30

Figure 13 Pointer logic. Solid lines are main inputs/outputs of the mat, while
dashed lines are internal signals...33

Figure 14 Tile crossbar ...34

Figure 15 IMCN_in signal generation for each memory mat...............................36

Figure 16 A sample 2-way set associative cache configuration..........................37

Figure 17 A transactional cache...39

Figure 18 Interfaces to the Load/Store Unit ..41

Figure 19 Association of tag mat indices with data mat42

Figure 20 Virtual and physical address spaces...43

Figure 21 A segment table entry ..44

 Page vi

Figure 22 Breakdown of address bits for accessing on-chip memories45

Figure 23 Allocation of configuration address space...46

Figure 24 Access translation for the TIE port ..47

Figure 25 Communication queues to protocol controller.....................................48

Figure 26 High level architecture of protocol controller51

Figure 27 Tracking and serialization unit ..53

Figure 28 State update unit...53

Figure 29 Data Movement Unit ...55

Figure 30 Data pipe ..56

Figure 31 Processor interface logic...56

Figure 32 Network transmitter...57

Figure 33 Network receiver ...57

Figure 34 Processing steps for read miss...62

Figure 35 Flit payload formats ..63

Figure 36 Common fields for headers (used by all packets)65

Figure 37 Fields that differ from one packet type to other. Bit 0 is where header
flit ends and the next flit starts. ...65

Figure 38 Architecture of memory controller ...68

 Page vii

 Page viii

1 Introduction
For a long time microprocessor designers focused on improving performance of
sequential applications on single processor machines, achieving an annual
performance growth rate of over 50% [1]. This phenomenal performance growth
relied on three main factors: exploiting instruction-level parallelism (ILP),
decreasing the number of “gates” in each clock cycle by building faster
functional units and longer instruction pipelines, and using the faster transistors
provided by CMOS technology scaling [2, 3]. Unfortunately, the first two factors
have reached their limit; as a result of this and limitations such as wire delay and
slowly changing memory latency, single processor performance growth has
slowed down dramatically [1-3]. In addition, increasing complexity and deeper
pipelining reduce the power efficiency of high-end microprocessors [4, 5]. These
trends led researchers and industry towards parallel systems on a chip [6-16].
Parallel systems can efficiently exploit the growing number of transistors
provided by continued technology scaling [2].

Programmers must re-write application software to realize the benefits of parallel
systems on a chip. Since traditional parallel programming models such as shared
memory and message-passing are not easy to use, researchers have proposed
a number of new programming models. Two of the most popular today are
streaming [17-19] and transactions [20, 21]. Although these new programming
models are effective for some applications, they are not universal and the
traditional shared memory model is still being used, especially in conjunction with
a thread package. Also, new programming models are still evolving as
researchers refine their APIs [22-24].

The goal of the Stanford Smart Memories project is to design a flexible
architecture that can support several programming models and a wide range of
applications. Since processors are fundamentally flexible – their operation is set
by the code they run, our focus was on making the memory system as flexible as
the processors. Our approach is to design a coarse-grain architecture that uses
reconfigurable memory blocks [25] and a programmable protocol controller to
provide the flexible memory system. Memory blocks have additional meta-data
bits and can be configured to work as various memory structures, such as cache
memory or local scratchpad, as necessary for a particular programming model or
application. The protocol controller can be programmed to support different
memory protocols, like cache coherence or transactional coherence and
consistency (TCC) [21].

The Smart Memories architecture allows researchers to compare different
programming models and memory system types under the same hardware
resource constraints and to experiment with hybrid programming models [26, 27].

The rest of this section briefly reviews the memory and programming models we
have already implemented on this architecture and related hardware required for

 Page 1

their implementation. These programming models informed our reasoning about
what were the required types of memory operations. The bulk of the final report is
in Section 2, which describes the resulting hardware implementation in more
detail. The design of this hardware was the primary output of this research effort.
This architecture will be taped-out in Jan 2008, and we hope to have a system up
and running later in that year.

In addition to creating the Smart Memory Architecture, this research effort also
pushed forward the Transactional Memory programming model. This work is
described in more detail in Section 3.

1.1 Cache-Coherent Shared Memory Model
In cache-coherent shared memory systems, only off-chip DRAM memory is
directly addressable by all processors. Because off-chip memory is slow
compared to the processor, fast on-chip cache memories are used to store the
most frequently used data and to reduce the average access latency. Cache
management is performed by hardware and does not require software
intervention. As a processor performs loads and stores, hardware attempts to
capture the working set of the application by exploiting spatial and temporal
locality. If the data requested by the processor is not in the cache, the controller
replaces the cache line least likely to be used in the future with the appropriate
data block fetched from DRAM.

Software threads running on different processors communicate with each other
implicitly by writing and reading shared memory. Since several caches can have
copies of the same cache line, hardware must guarantee cache coherence, i.e.
all copies of the cache line must be exactly the same. Hardware implementations
of cache coherence typically follow an invalidation protocol: a processor is only
allowed to modify an exclusive copy of the cache line, and all other copies must
be invalidated before the write. Invalidation is performed by sending read for
ownership requests to other caches. A common optimization is to use cache
coherence protocols such as MESI (Modified/Exclusive/Shared/Invalid), which
reduce the number of cases where remote cache lookups are necessary.

To resolve races between processors for the same cache line, requests must be
serialized. In small scale shared memory systems serialization is performed by a
shared bus which broadcasts every cache miss request to all processors. The
processor which wins bus arbitration receives the requested cache line first. Bus-
based cache coherent systems are called also symmetric multi-processors
(SMP) because any main memory location can be accessed by any processor
with the same average latency.

High latency and increased contention make the bus a bottleneck for large
multiprocessor systems. Distributed shared memory (DSM) systems eliminate
this bottleneck by physically distributing both processors and memories, which

 Page 2

then communicate via an interconnection network. Coherence serialization is
performed by directories associated with DRAM memory blocks. Directory-based
cache coherence protocols try to minimize communication by keeping track of
cache line sharing in the directories and sending invalidation requests only to
processors which previously requested the cache line. DSM systems are also
called non-uniform memory access (NUMA) architectures because average
access latency depends on processor and memory location. Development of
high-performance applications for NUMA systems can be significantly more
complicated because programmers need to pay attention to where the data is
located and where the computation is performed.

Chip multiprocessors (CMP) have significantly higher interconnect bandwidth and
lower communication latencies than traditional multi-chip multiprocessors. This
implies that the efficient design points for CMPs are likely to be different from
those for traditional SMP and DSM systems. Also, even applications with non-
trivial amount of data sharing and communication can perform and scale
reasonably well. At the same time, modern CMPs are often limited by total power
dissipation; low power is consequently one of the main goals of cache coherence
design.

To improve performance and increase concurrency, multiprocessor systems try
to overlap and re-order cache miss refills. This raises the question of a memory
consistency model: what event ordering does hardware guarantee [28].
Sequential consistency guarantees that accesses from each individual processor
appear in program order, and that the result of execution is the same as if all
accesses from all processors were executed in some sequential order. Relaxed
consistency models give hardware more freedom to re-order memory operations
but require programmers to annotate application code with synchronization or
memory barrier instructions to insure proper memory access ordering.

To synchronize execution of parallel threads and to avoid data races
programmers use synchronization primitives such as locks and barriers.
Implementation of locks and barriers requires support for atomic read-modify-
write operations, e.g. compare-and-swap or load-linked/store-conditional. Parallel
application programming interfaces (API) such as POSIX threads [29] and ANL
macros [30] define application level synchronization primitives directly used by
the programmers in the code.

1.2 Streaming Memory Model
In streaming architectures fast on-chip storage is organized as directly
addressable memories called scratchpads, local stores, or stream register files
[9, 13, 17]. We use the term scratchpad in this report. Data movement within chip
and between scratchpads and off-chip memory is performed by direct memory
access (DMA) engines which are directly controlled by application software. As a
result software is responsible for managing and optimizing all aspects of
communication: location, granularity, allocation and replacement policies, and the
number of copies. For applications with simple and predictable data flow all data

 Page 3

communication can be scheduled in advance and completely overlapped with
computation, thus hiding communication latency.

Since data movements are managed explicitly by software, complicated
hardware for coherence and consistency is not necessary. Hardware architecture
should support DMA transfers between local scratchpads and off-chip memory.1
Processors can access their local scratchpads as FIFO queues or as randomly
indexed memories [31].

Streaming is similar to message-passing applied in the context of CMP design.
However, there are several important differences from traditional message-
passing in clusters and massively parallel systems. Communication is managed
at the user level software and its overhead is low. Messages are exchanged at
the first level of memory hierarchy, not the last one, and software has to take into
account limited size of local scratchpads. Since communication between
processors happens within a chip, the latency is low and the bandwidth is high.
Finally, software manages both the communication between processors and the
communication between processor scratchpads and off-chip memory.

Researchers have proposed several stream programming languages:
StreamC/KernelC [17], StreamIt [19], Brook GPU [32], and Sequoia [33]. These
languages differ in the level of abstraction but they share some basic concepts.
Streaming computation must be divided into a set of kernels, i.e. functions which
can not access arbitrary global state. Inputs and outputs of the kernel are called
streams and must be specified explicitly as kernel arguments. Stream access
patterns are typically restricted. Another important concept is reduction variables
which allow a kernel to do calculations involving all elements of the input stream,
such as the stream’s summation.

Restrictions on data usage in kernels allow streaming compilers to determine
computation and input data per element of the output stream, to parallelize
kernels across multiple processing elements, and to schedule all data
movements explicitly. In addition, the compiler optimizes the streaming
application by splitting or merging kernels to balance loading, to fit all required
kernel data into local scratchpads, or to minimize data communication through
producer-consumer locality [17]. The complier also tries to overlap computation
and communication by performing stream scheduling: DMA transfers run during
kernel computation, which is equivalent to macroscopic prefetching.

To develop a common streaming compiler infrastructure, Stanford researchers
have proposed the stream virtual machine (SVM) abstraction [34, 35]. SVM gives

1Some recent stream machines use caches for the control processor. In these cases, while the
local memory does not need to maintain coherence with the memory, the DMA often needs to be
consistent with the control processor. Thus in the IBM Cell processor the DMA engines are
connected to coherent bus and all DMA transfers are performed to coherent address space [13].

 Page 4

high-level optimizing compilers for stream languages a common intermediate
representation.

1.3 Transactional Memory Model
The traditional shared memory programming model usually requires
programmers to use low-level primitives such as locks for thread synchronization.
Locks are required to guarantee mutual exclusion when multiple threads access
shared data. However, locks are hard to use and error-prone – especially when
programmer is trying to avoid deadlock or to improve performance and scalability
by using fine-grain locking [36]. Lock-based parallel applications can also suffer
from priority inversion, and convoying [20]. These arise when subtle interaction
between locks cause high priority tasks to wait for lower priority tasks to
complete.

Lock-free shared data structures allow programmers to avoid problems
associated with locks [37]. This methodology requires only standard compare-
and-swap instruction but introduces significant overheads and thus it is not
widely used in practice.

Transactional memory was proposed as a new multiprocessor architecture and
programming model intended to make lock-free synchronization as efficient as
conventional techniques based on locks [20]. Transactional memory allows
programmers to define custom read-modify-write operations that can be applied
to multiple arbitrary words in memory. The programmer must annotate
applications with start transaction/end transaction commands; the hardware
executes all instructions between these commands as a single atomic operation.
Other processors or threads can only observe transaction state before or after
execution; intermediate state is hidden. If transaction conflict is detected, such as
one transaction updating a memory word read by another transaction, one of
conflicting transactions must re-executed.

The concept of transactions is the same as in database management systems
(DBMS). In DBMS, transactions provide the properties of atomicity, consistency,
isolation, and durability (ACID). Transactional memory programming model is
similar to database programming. The key difference is the number of
instructions per transaction and the amount of state read or written by the
transaction.

Transactional memory implementations have to keep track of transaction read-
set, all memory words read by the transaction and write-set, and all memory
words written by the transaction. Read-set is used for conflict detection between
transactions, while write-set is used to track speculative transaction changes
which will become visible after transaction commit or will be dropped after
transaction abort. Conflict detection can be either eager or lazy. Eager conflict
detection checks every individual read and write performed by the transaction to
see if there is a collision with another transaction. Such an approach allows early
conflict detection but requires read and write sets to be visible to all other

 Page 5

transactions in the system. In the lazy approach, conflict detection is postponed
until the transaction tries to commit.

Another design choice for transactional memory implementations is the type of
version management. In eager version management, the controller writes
speculative data directly into the memory as a transaction executes and keeps
an undo log of the old values [38]. Eager conflict detection must be used to
guarantee transaction atomicity with respect to other transactions. Transaction
commits are fast since all data is already in place but aborts are slow because
old data must be copied from the undo log. This approach is preferable if aborts
are rare but may introduce subtle complications such as weak atomicity [39]:
since transaction writes change the architectural state of the main memory they
might be visible to other threads that are executing non-transactional code.

Lazy version management is another alternative, where the controller keeps
speculative writes in a separate structure until a transaction commits. In this case
aborts are fast since the state of the memory is not changed but the commits
require more work. It is easier to support strong atomicity: complete transaction
isolation from both transactions and non-transactional code executed by other
threads [39].

Transactional memory implementations can be classified as hardware
approaches (HTM) [20, 21], software-only (STM) techniques [40], or mixed
approaches. Two mixed approaches have been proposed: hybrid transactional
memory (HyTM) supports transactional execution in hardware but falls back to
software when hardware resources are exceeded [41, 42], while hardware-
assisted STM (HaSTM) combines STM with hardware support to accelerate STM
implementations [44, 45].

In some proposed hardware transactional memory implementations, a separate
transactional or conventional data cache is used to keep track of transactional
reads and writes [20]. For either cache type, transactional support extends
existing coherence protocols such as MESI to detect collisions and enforce
transaction atomicity. The key issues with such approaches are arbitration
between conflicting transactions and dealing with overflow of hardware
structures. Memory consistency is also an issue since application threads can
execute both transactional and non-transactional code.

Transactional coherence and consistency (TCC) is a transactional memory
model in which atomic transactions are always the basic unit of parallel work,
communication, and memory coherence and consistency [21]. Each of the
parallel processors in TCC model continually executes transactions. Each
transaction commits its writes to shared memory only as an atomic block after
arbitration for commit. Only one processor can commit at a time by broadcasting
its transactional writes to all other processors and to main memory. Other
processors check incoming commit information for read-write dependency
violations and restart their transactions if violations are detected. Instead of

 Page 6

imposing some order between individual memory accesses, TCC serializes
transaction commits. All accesses from an earlier committed transaction appear
to happen before any memory references from a later committing transaction,
even if actual execution was performed in an interleaved fashion. The TCC
model guarantees strong atomicity because the TCC application only consists of
transactions. Hardware overflow is also easy to handle: a transaction that detects
overflow before commit stalls, and must arbitrate for the commit token. Once it
has the token, it is no longer speculative, and can commit its previously
speculative changes to free up hardware resources, and then continue
execution. It can’t release the commit token until it hits commit point in the
application. Clearly this serializes execution, since only one thread can have the
commit token at a time, but it does allow overflows to be cleanly handled.

A Programmer using TCC divides the application into transactions that will be
executed concurrently on different processors. The order of transaction commits
can be optionally specified. Such situations usually correspond to different
phases of the application which must be separated by synchronization barriers in
lock-based model. To deal with such ordering requirements TCC has hardware-
managed phase numbers for each processor which can be optionally
incremented upon transaction commit. Only transactions with oldest phase
number are allowed to commit at any time.

Stanford researchers have proposed the OpenTM application programming
interface (API), which provides a common programming interface for various
transactional memory architectures [24].

1.4 Memory System Features
In looking over all three programming models, we find a number of common
elements. All the designs use fast local memory close to the processor. This
memory often has some state bits associated with it, but the use of the state is
different in the different programming models. For example, in a cache it tracks
the “state” of the cache line, for transactional memory it needs also to track data
that is speculatively read or written, and for streaming it might be used to track
whether the DMA has actually fetched a given word. In addition to the different
uses of the state bits, the amount and connection of the local memories also
differs in different machine models, and even between different applications
within a programming model. This meant we needed to provide both flexible
state bits in our memory system, and method for the processor to leverage these
bits. The design of this flexible memory system is described in Section 2.3.

In addition to the flexible local memory, all these memory systems require a
relatively sophisticated protocol engine that can handle the movement of data
between the main memory and the local memories. Each of the programming
models thinks about this movement differently, DMAs for streaming, cache fills
and spills for shared memory, and commits in transactions, but the underlying
operations are all pretty similar. They all require a mechanism to move blocks of
data between the cache and the memory system, track outstanding requests,

 Page 7

and for some protocols, maintain some ordering of events. In the Smart Memory
system, the reconfigurable protocol controller handles these functions, and is
described in Section 2.5.

The core processor that connects to the memory system initially was a custom
designed processor that could flexible change its resources to better match the
computational requirements of the different programming models. During the
start of this research effort we realized that we could build this processor, but we
did not have the resources to create the complete software tool chain that would
be needed to make the processor truly useful. At that point we decided to use the
Tensilica configurable processor, and use the configuration to make it work in our
system. The next section reviews the overall design of our Smart Memory
architecture, beginning with the overview of the entire system and a description
of the memory clustering that was used. Section 2.2 describes the processor
core in more detail, including how we used the Tensilica system to provide the
special memory operations we needed.

 Page 8

2 Smart Memories Implementation

Figure 1 Smart Memories Architecture

The Smart Memories architecture was designed to support three different
programming models and to accommodate VLSI physical constraints. As shown
in Figure 1, the system consists of Tiles, each with two VLIW cores, several
reconfigurable memory blocks, and a crossbar connecting them. Four adjacent
Tiles form a Quad. Tiles in the Quad are connected to a shared protocol
controller. Quads are connected to each other and to the off-chip interfaces using
a mesh-like network.

The reconfigurable memory system is the key element of the Smart Memories
architecture that allows it to support different programming models. The design of
the memory system is based on the observation that, although different
programming models place different requirements on the memory systems, the
underlying hardware resources and operations are very similar. For example, the
same memory blocks can be used to store data in caches or in stream register
files; extra memory bits are used to store meta-data such as cache line state in
conventional caches and “speculative” bits in transactional caches [21]. By
adding a small amount of extra logic we can configure the same memory
resources to behave differently.

The memory system consists of three major reconfigurable blocks, highlighted in
Figure 1. The memory interface in each Tile (Load/Store Unit) coordinates
accesses from processor cores to local memories and allows reconfiguration of
basic memory accesses. A basic operation, such as a Store instruction, can treat
a memory word differently in transactional mode than in conventional cache
coherent mode. The memory interface can also broadcast accesses to a set of
local memory blocks. For example, when accessing a set-associative cache, the
access request is concurrently sent to all the blocks forming the cache ways.

Each memory mat in the Tile is an array of data words; each data word is
associated with a few meta-data bits. Meta-data bits store the status of that data
word and their state is considered in every memory access; an access to this
word can be discarded based on the status of these bits. For example, when

 Page 9

mats are configured as a cache, these bits are used to store the cache line state,
and access is discarded if the status indicates that cache line is invalid. The meta
data bits are dual ported, so they are updated atomically with access to the data
word. The update functions are set by the configuration. A built-in comparator
and a set of pointers allow the mat to be used as tag storage (for cache) or as a
FIFO. Mats are connected to each other through an inter-mat network that
communicates control information when the mats are accessed as a group.
While the hardware cost of reconfigurable memory blocks is high in our standard-
cell prototype, full custom design of such memory blocks can be quite efficient
[25].

The protocol controller is a reconfigurable control engine that can execute a
sequence of basic memory system operations to support memory mats. These
operations include loading and storing data words (or cache lines) into mats,
manipulating meta-data bits, keeping track of outstanding requests from each
Tile, and broadcasting data or control information to Tiles within the Quad. This
controller is connected to a network interface for sending and receiving requests
to/from other Quads or off-chip interfaces.

Mapping a programming model to the Smart Memories architecture requires
configuration of memory mats, Tile interconnect and protocol controller. For
example, when implementing a shared-memory model, memory mats are
configured as instruction and data caches, the Tile crossbar routes processor
instruction fetches, loads, and stores to the appropriate memory mats, and the
protocol controller acts as a cache coherence engine, which refills the caches
and enforces coherence invariance.

2.1 Memory System Protocols
As previously mentioned, Smart Memories supports both a cache-coherent
shared memory model and Transactional Coherence and Consistency. This
section describes memory system protocols to implement necessary semantics
of these programming models. In addition, a fine-grain synchronization protocol,
which is used by all of the target programming models for providing
synchronization primitives, is described in this section.

2.1.1 Coherence protocol
In the shared memory model, the memory system provides processors with local
instruction and data cached to capture spatial and temporal locality of the
applications’ memory accesses. These caches need to be kept coherent by
hardware such that each read to a memory address returns the value of the last
write.

Smart Memories implements a hierarchical MESI coherence protocol to enforce
coherence between all caches in the system. Data and instruction address
spaces are kept coherent separately and not against one another. Coherence is
maintained in two steps: a protocol controller in the Quad keeps caches within

 Page 10

the Quad coherent, while one or more memory controllers are responsible for
enforcing coherence among Quads. Memory requests go through points of
serialization; memory requests from different caches that are within a Quad are
serialized in the Quad’s protocol controller, while memory requests from different
Quads are serialized at the global level by the home memory controller for the
specific cache line.

After a cache miss request passes the serialization point in the Quad’s protocol
controller, other Quad caches are searched (or “snooped”) to update the state of
the cache line according the MESI protocol. The protocol controller is capable of
performing cache-to-cache transfers between Quad caches and merging
requests from different sources inside the Quad to reduce latency and bandwidth
requirements. If a cache request cannot be satisfied locally, a miss request is
sent to the home memory controller to fetch the cache line.

The home memory controller of the cache line essentially takes the same steps
at a higher level; after receiving a cache miss request and serializing it against
any other outstanding cache misses, it broadcasts appropriate coherence
requests to all Quads except the one which sent the original cache miss to
inquire about the state of the cache line. Protocol controllers receive coherence
requests, snoop caches and update the state according to MESI protocol. They
send coherence replies back to the inquiring memory controller which might or
might not contain the cache line (depending on type of the request and state of
the cache line within the Quad).

Figure 2 Steps in enforcing coherence

 Page 11

Figure 2 shows the steps involved in processing a sample cache miss request.
These steps are as follows:

1- Cache miss request is received by protocol controller and is serialized
properly

2- Local caches are snooped, state of any local copy of the cache line is
adjusted

3- Cache miss request is sent to memory controller and is serialized properly
with respect to requests from other Quads

4- Coherence requests are sent to Quads except the one that originated
cache miss

5- Main memory is accessed in parallel go fetch the cache line
6- Protocol controller snoops caches and adjusts cache line states
7- Coherence replies are sent back to memory controller, which may or may

not contain the actual cache line
8- Reply for the original cache miss is sent back after collecting all replies
9- Cache line is refilled and requested data word is sent to processor

Protocol controllers are capable of merging requests from different processors
within the Quad to avoid sending unnecessary requests to memory controllers.
Also, coherence can be turned on or off for parts of the address space by setting
control bits within the protocol and memory controllers. This allows the private
regions of the address space to be marked as not coherent and hence reduces
the coherence traffic as well as latency of completing such requests.

2.1.2 Transactional Coherence and Consistency
As its transactional programming model, Smart Memories implements
transactional coherence and consistency (TCC). TCC leverages the same
hardware components and operations used for cache coherence and streaming.
The operations of the memory system in for implementing TCC protocol is
described in this subsection.

As mentioned previously, TCC uses lazy conflict detection and eager commits.
Transactional modifications are stored in processor’s data cache and are
broadcast to other transactions only after commit. Each read/write operation
marks the accessed word in the data cache with an SR (speculatively read) or
SM (speculatively modified) bits. Hence, transaction’s read set and write set are
completely specified within processor’s data cache. Whenever the transaction
finishes, it arbitrates for acquiring a commit token, which allows it to make its
changes visible to others. If the transaction wins the arbitration, it asks protocol
controller of its Quad to commit its write set.

Committing the write set of the transaction causes its modification to be written
back to main memory as well as updating those words in other caches of the
system. At the same time, the read set of other transactions are checked to
detect any possible data dependence violation. A dependence violation is

 Page 12

detected if the committing word is found in the data cache of another transaction
and it is marked with the SR bit.

Similar to the coherence protocol, commit is also a two level process. Upon
request from a committing transaction, a Quad’s protocol controller uses its DMA
engine to read the committing transaction’s write set out of its data cache. For
each word read, protocol controller then searches (“snoops”) other data caches
and updates the word if it is found. No action is taken if the word is not found in a
data cache or if it is already is marked as SM (this means the other transaction
has created its own copy of the data word). However, if the word is found and it is
marked as SR, processor owning the cache is informed to abort the transaction
and restart.

Next, words are sent to the owning memory controller and are written to main
memory. The memory controller also broadcasts the words to other Quads within
the system, so that they can also update their caches and check for violations.
Figure 3 shows the steps involved in the process:

1- Word is read from committing processor’s data cache
2- It is written to other caches in the Quad. SR bit of the word in those

caches is checked.
3- Data is sent to owner memory controller
4- It is written to main memory
5- Memory controller broadcasts the word to all other Quads
6- Each Quad receives the word and writes it to its caches. SR bit of the

word in each cache is checked to detect violations.

The commit procedure shares the same basic hardware mechanisms as cache
coherence, such as cache searches (snoops) and broadcasting commit requests
to all Quads. It also leverages the DMA engines, which are heavily used in the
streaming mode, for reading data out of source cache. When implementing TCC,
the protocol controller also satisfies data and instruction cache misses in
basically the same way as for shared memory mode. The difference however is
that the coherence protocol is turned off and the cache line is always directly
fetched from off-chip memory.

 Page 13

Figure 3 Steps for committing transactions write set

2.1.3 Fast, fine-grain synchronization protocol
To provide the programmer with the basic synchronization primitives such as
locks and barriers necessary for parallel applications, Smart Memories
implements a set of atomic read-modify-write operations in the memory system.
These operations leverage the state bits associated with the data words,
essentially treating them as lock bits. Necessary instructions are added to the
processor’s ISA to enable such operations.

When accessed by a synchronization operation, a word has two additional state
bits: Full/Empty (F/E) and Wait (W) bits. The F/E bit essentially is an indication of
whether the data word is currently full or empty. If the word is empty, its content
cannot be read, and if it is full, it cannot be written. Hence, synchronization
operations may succeed or fail based on the current value of this bit. The Wait bit
indicates that there has been an unsuccessful attempt for reading or writing this
word and that whenever a synchronization operation succeeds, it has to wake up
the previous unsuccessful access so that it can retry reading/writing the word.

These bits are updated atomically by the synchronization access and processors
also send out messages to the home memory controller of the word to report a
successful or unsuccessful synchronization operation. There are two types of
messages: a sync miss message indicates that a processor had an unsuccessful
access and is stalled. A wakeup notification indicates that there was a successful
synchronization access and a sleeping reader or writer needs to be awakened to
retry its access. Table 1 summarizes synchronization operations defined for the
processors, their semantics, and messages sent to the memory controller in each

 Page 14

case. These instructions and state bits are discussed further in the later sections
of this report.

Current New Instruction

F/E W F/E W

Operation

0 X 0 1 Stall processor, Send sync load miss request

1 0 0 0 Read data

Sync Load

1 1 0 0 Read data, Send writer wakeup notification

0 0 1 0 Write data

0 1 1 0 Write data, Send reader wakeup notification

Sync Store

1 X 1 1 Stall processor, Send sync store miss request

X 0 0 0 Read data Reset Load

X 1 0 0 Read data, Send writer wakeup notification

X 0 1 0 Write data Set Store

X 1 1 0 Write data, Send reader wakeup notification

0 X 0 1 Stall processor, Send future load miss request

1 0 1 0

Future Load

1 1 1 1

Read data

Table 1 Semantics of Synchronization Operations

Note that Reset Load and Set Store operations are always successful. They do
not pay attention to the value of the F/E bit and always read/write the data word.
Future load operation is the same as Sync Load, the only difference is that it
does not reset the F/E bit after reading data word, hence does not “consume” the
data and therefore it never sends a wakeup notification.

Sync miss messages include the address of the data word, the type of operation
(sync load, sync store, future load) and the ID of the unsuccessful. Based on the
address, these messages are routed to the appropriate memory controller and
are queued until they are awakened.

 Page 15

Wakeup notifications carry the address of the word and the type (reader/writer).
Depending on the type of the wakeup, the memory controller selects a sync miss
from its queue that has the same address and sends it back to the protocol
controller. The protocol controller retries the synchronization operation on behalf
of the issuing processor and if it is successful, it notifies and un-stalls the
processor. Figure 4 shows a simple example of how the protocol works:

Figure 4 Steps in enforcing coherence

1- Processor P1 accesses a word with a sync load operation and stalls. It
sets W=1.

2- It sends a sync load miss message to protocol controller.
3- Message is sent to memory controller and it is queued.
4- Processor P2 accesses the same word with a sync store operation,

successfully writes data word, sets F/E=1 and observes W bit to be
one.

5- It sends a reader wakeup notification to protocol controller
6- Wake up is sent to memory controller
7- Memory controller takes P1’s sync load out of the queue and sends a

replay request to protocol controller
8- Protocol controller replays sync load on behalf of P1, reads the data

word and clears F/E bit.
9- It returns the data word back to P1 and un-stalls the processors

Synchronization accesses can be issued to both cached and un-cached
addresses. When issued to a cached address, all synchronization operations are

 Page 16

considered as writes, which need to acquire ownership of the cache line before
they can attempt to read or write the word. The synchronization protocol relies on
the underlying coherence mechanisms to refill the cache line with proper
ownership before it attempts the synchronization access.

For un-cached addresses, synchronization accesses can only be issued to on-
chip memories. They are simply routed to the Quad which contains the word and
are replayed by its protocol controller on behalf of the issuing processors. Sync
misses are still sent to memory controllers and queued there.

2.2 Processor

2.2.1 Overview of Tensilica LX
Tensilica provides the configurable embedded Xtensa processor. Tensilica’s
Xtensa Processor Generator automatically generates a synthesizable hardware
description for the user customized processor configuration. The user can select
pre-defined options such as floating-point co-processor (FPU) and can define
custom instruction set extensions using the Tensilica Instruction Extension
language (TIE).

The base Xtensa architecture is a 32-bit RISC instruction set architecture (ISA)
with 24-bit instructions and windowed general-purpose register file. Register
windows are 16-register wide. The total number of physical registers is 32 or 64.

The base Xtensa ISA pipeline is either five or seven pipeline stages and has a
user selectable memory access latency of one or two. Two cycle memory latency
allows designers to achieve faster clock cycles or to relax timing constraints on
memories and wires.

The core supports some predefined options and ISA extensions:

- 16-bit wide instruction option for code density;
- 16-bit integer multiply-accumulator;
- 32-bit integer multiplier;
- 32-bit integer divider;
- 32-bit floating-point co-processor;
- 64-bit floating-point accelerator;
- 128-bit integer SIMD unit;
- configurable interrupts and timers;
- on-chip debug (OCD) port (via JTAG);
- instruction trace port.

Tensilica gives users a number of memory options:

- big or little endian;
- configurable width of load/store unit: 32/64/128;

 Page 17

- configurable instruction fetch width: 32/64;
- configurable instruction and data caches:

o size (0-32KB) ;
o associativity (1-4);
o cache line size (16/32/64B);
o write-through or write back;

- optional data RAM and/or ROM (0-256KB);
- optional instruction RAM and/or ROM (0-256KB);
- optional Xtensa Local Memory Interface (XLMI);
- optional Processor Interface (PIF) to external memory system;
- parity or Error Correction Code (ECC) options.
-

In addition to pre-defined options and extensions, a user can define custom
processor extensions using the TIE language. TIE permits addition of registers,
register files, and new instructions to improve performance of the most critical
parts of the application. Multiple operation instruction formats can be defined
using the Flexible Length Instruction eXtension (FLIX) feature to further improve
performance.

Another feature of the TIE language is the ability to add user-defined processor
interfaces such as simple input or output wires, queues with buffers, and lookup
device ports. These interfaces can be used to interconnect multiple processors or
to connect a processor to other hardware units.

The TIE compiler generates a customized processor, taking care of low-level
implementation details such as pipeline interlocks, operand bypass logic, and
instruction encoding.

Tensilica also provides customized software tools and libraries:

- instruction set simulator:
o standalone single processor cycle-accurate simulator for

performance modeling;
o standalone single processor fast functional simulator for software

development;
o processor model for user-designed multi-processor simulator

(through Tensilica’s XTMP API);
- software development tools (based on GNU software tool chain):

o optimizing C/C++ compiler;
o linker;
o assembler;
o debugger;
o profiler;

- XPES compiler: generator of application-specific TIE extensions;
- standard software libraries (GNU libc) for application development.

 Page 18

2.2.2 Interfacing Tensilica processor to Smart Memories
Connecting the Tensilica processor to the reconfigurable memory system is
complicated because Tensilica interfaces were designed for different
applications. Figure 5 shows all available memory and interface options.
Although Xtensa processor has interfaces to implement instruction and data
caches, these options do not support the functionality and flexibility necessary for
Smart Memories architecture. For example, Xtensa caches do not support cache
coherence. Cache interfaces are connected directly to SRAM arrays for cache
tags and data, and the processor contains all the logic required for cache
management. As a result, it is impossible to modify the functionality of the Xtensa
caches or to re-use the same SRAM arrays for different memory structures like
local scratchpads.

In addition to simple load and store instructions, the Smart Memories architecture
supports several other memory operations such as synchronized loads and
stores. These memory operations can easily be added to the instruction set of
the processor using TIE language but it is impossible to extend Xtensa memory
interfaces to support such instructions.

Shared Memories

Figure 5 Xtensa Interfaces

Instead of cache interfaces we decided to use instruction and data RAM
interfaces as shown in Figure 6. In this, case instruction fetches, loads and stores
are sent to interface logic (Load Store Unit) that converts them into actual control
signals for memory blocks used in the current configuration. Special memory
operations are sent to the interface logic through TIE lookup port which has the

Xtensa

Instruction
Cache

Instruction
RAM

Instruction
ROM

Data
Cache

Data
RAM

Data
ROM

PIF

XLMI

Shared Peripherals
Shared FIFOs Queue

TIE Queue
Device TIE Port

Interrupts

TIE Lookup

Off-Chip Bus
Interface

Memory On-Chip Bus
Lookup Memory
Device ProcessorMemory

Processor
ProcessorPeripheral

Peripheral
Peripheral

 Page 19

same latency as the memory interfaces. If the data for a processor access is
ready in 2 cycles, the interface logic sends it to the appropriate processor pins. If
the reply data is not ready due to cache miss, arbitration conflict or remote
memory access, the interface logic stalls processor clock until the data is ready.

InterfaceCLKXtensa
Logic
(LSU) Processor

Figure 6 Processor Interfaces to Smart Memories

The advantage of this approach is that the instruction and data RAM interfaces
are very simple: they consist of enable, write enable/byte enables, address and
write data outputs and return data input. The meaning of the TIE port pins are
defined by instruction semantics described in TIE. Processor logic on the critical
path is minimal. Interface logic is free to perform any transformations with the
virtual address supplied by the processor.

Special load instructions such as synchronized loads supported by Smart
Memories are different from ordinary load instructions in that they can have side
effects, i.e. alter architectural state of the memory. Standard load instructions do
not have side effects, i.e. do not alter architectural state of the memory system,
and therefore they can be executed by the processor as many times as
necessary. This can happen because of processor exceptions as shown in
Figure 7: loads are issued to the memory system at the end of E stage, load data
is returned to the processor at the end of M2 stage, while the processor commit
point is in W stage, i.e. all processor exceptions are resolved only in W stage.
Stores are issued only in W stage after commit point.

Instruction
RAM port

Data
RAM port

Instruction
Cache

TIE lookup
port

Data
Cache

 Page 20

commit point

F1 F2 D E M1 M2 W U1 U2

Figure 7 Processor Pipeline

Since it is very difficult to undo side effects of special memory operations, they
are also issued after commit point in W stage. Processor pipeline was extended
by 2 stages (U1 and U2 in Figure 7) to have the same 2 cycle latency for special
load instructions.

However, having different issue stages for different memory operations creates
the memory ordering problem as illustrated in Figure 8a. A load following
synchronized load in the application code is seen by the memory system before
the synchronized load because it is issued in the E stage. To prevent such re-
ordering, we added pipeline interlocks between special memory operations and
ordinary loads and stores. An example of such interlock is shown in Figure 8b.
The load is stalled in the D stage for 4 cycles to make sure the memory system
sees it 1 cycle after previous synchronized load. One extra empty cycle is added
between 2 consecutive operations to simplify memory system logic for the case
of synchronization stalls.

load load store/

custom

fetch fetch custom

load

 Page 21

issue data

s. load F1 F2 D E M1 M2 W U1 U2

load F1 F2 D E M1 M2 W U1 U2

issue data

a)

issue data

s. load F1 F2 D E M1 M2 W U1 U2

load F1 F2 D - - - - E M1 M2 W U1 U2

issue data b)

Figure 8 Memory operation pipeline: a) without interlocks; b) with interlocks

Another issue is related to very tight timing constraints on the processor clock
signal as shown in Figure 9. The forward path for the memory operation data
issued by the processor is going through the flop in the interface logic and then
through the flop in the memory mat. In the reverse path the output of memory
mat goes to the stall logic and determines whether the processor clock should be
stalled or not. To avoid glitches on the processor clock the output of the stall logic
must go through a flop clocked with inverted clock. The whole reverse path
including memory mat, crossbar and stall logic delays should fit in a half clock
cycle. This half cycle path is the most critical in the whole design and determines
clock cycle time.

 Page 22

stark
Is it still the slowest path in the system after the processor clock was inverted?

Xtensa Processor

Figure 9 Processor and Tile Pipeline

To relax timing constraints, the processor is clocked with inverted clock: the
reverse path delay becomes the whole clock cycle, rather than just the half cycle.

2.2.3 Special Memory Access Instructions
Several instructions were added to the Tensilica processor to exploit functionality
of Smart Memories architecture:

synchronized load: stall if full/empty (FE) bit associated with data word is zero
(“empty”), unstall when FE bit becomes one (“full), return data word to the
processor and flip atomically FE bit to zero;

synchronized store: stall if FE bit is 1, unstall when it becomes 0, write data word
and flip atomically FE bit to 1;

future load: the same as synchronized load but FE bit is not changed;

reset load: reset FE bit to 0 and return data word to the processor without stalls
regardless of the state of FE bit;

Interface Logic

CLK

Memory
Mat

F
E

stage
M1

stage
M2

stage
W

stage F F F

F F

CLK

Crossbar

F

CLK
stall
logic

 Page 23

set store: set FE bit to 1 and write data word without stalls;

meta load: read the value of meta data bits associated with data word;

meta store: write to meta data bits;

raw load: read data word skipping virtual-to-physical address translation, i.e.
effective address calculated by the instruction is used as physical address
directly;

raw store: write data word skipping virtual-to-physical address translation;

raw meta load: read meta data word skipping virtual-to-physical address
translation;

raw meta store: write meta data word skipping virtual-to-physical address
translation;

fifo load: read a value from a memory mat configured as a FIFO, FIFO status
register in the interface logic is updated with FIFO status information, i.e. whether
FIFO was empty;

fifo store: store a value to a FIFO, FIFO status register is updated with FIFO
status information, i.e. whether FIFO was full;

safe load: read a data word from the memory and ignore virtual-to-physical
address translation errors;

memory barrier: stall the processor while there are outstanding memory
operations, i.e. non-blocking stores;

hard interrupt acknowledgement: signal to the memory system that hard interrupt
was received by the processor, this instruction is supposed to be used only
inside interrupt handler code;

mat gang write: gang write all meta data bits in the memory mat, supported only
for 3 meta data bits;

conditional mat gang write: conditionally gang write all meta data bits in the
memory mat, supported only for one meta data bit;

cache gang write: gang write all meta data bits in the data cache, supported only
for 3 meta data bits;

conditional cache gang write: conditionally gang write all meta data bits in the
data cache, supported only for one meta data bit.

These instructions use TIE lookup port to pass information from processor to the
memory system as described in the previous section.

 Page 24

2.2.4 Pre-Defined and VLIW Processor Extensions
To increase the computational capabilities and usability of the Smart Memories
architecture, the following pre-defined processor options were selected:

- 32-bit integer multiplier;
- 32-bit integer divider;
- 32-bit floating point unit;
- 64-bit floating point accelerator;
- 4 scratch registers;
- On-Chip Debug (OCD) via JTAG interface;
- instruction trace port;
- variable 16/24/64-bit instruction formats for code density and FLIX/VLIW

extension.

To further improve performance of the processor and utilization of the memory
system, we added several multi-instruction formats using FLIX/VLIW capability of
Tensilica system:

- {ANY; INT; FP};
- {ANY; NOP; FP};
- {ANY; INT; LIMITED INT};

where ANY means any type instruction, INT means integer instruction type
(excluding memory operations), FP means floating-point instruction type,
LIMITED INT means a small subset of integer instructions which require at most
1 read and 1 write port.

The reason for this choice of instruction formats is the limitation of Xtensa
processor generator: register file ports can not be shared between different slots
of FLIX/VLIW format. For example, FP multiply-add instruction requires 3 read
and 1 write ports, if such operation can be present in 2 different slots, then FP
register file must have at least 6 read and 2 write ports even if 2 such operations
are never put in the same instruction. On the other hand, memory operations can
only be allocated in slot 0 and the common usage case is to have memory
operation and compute operation such as multiply-add in the same instruction.
This means that it should be possible to have FP operations in slots other than 0
but the number of such slots should be minimal.

2.2.5 Processor Extension for Recovery from Missed Speculation
To be able to restart execution of a speculative transaction after violation, the
system state must be saved at the beginning of the transaction. There are two
distinct components of system state in the Smart Memories architecture: memory
system state and the processor state. Memory system state can be quickly
restored to the check point because all speculative changes are buffered in the
data cache and can be easily erased by invalidating cache lines with gang write
operations.

 Page 25

Processor state consists of the general purpose register files (integer and floating
point) and various control registers. Our approach is to force the compiler to spill
general purpose registers into the stack memory at the transaction check point
using the asm volatile construct. After a check point, the compiler inserts load
instructions to reload the values into the register files. The advantage of this
approach is that compiler spills only live register values, minimizing the number
of extra load and store instructions.

Spilled register values in the memory are check-pointed using the same
mechanism as other memory state. The only general purpose register that can
not be check-pointed this way is the stack pointer register a1; we use a separate
mechanism for the stack pointer as well as other processor control registers.

To save the state of control registers we added 3 more registers and used one of
the scratch registers:

- SPEC_PS – a copy of PS (processor status) register;
- SPEC_RESTART_ADDR – transaction restart address;
- SPEC_TERMINATE_ADDR – address to jump to in case of execution

abort;
- MISC1 – stack pointer.

To use these registers in interrupt handlers we added 2 special return-from-
interrupt instructions:

- SPEC_RFI_RESTART – return from interrupt to the address stored in
SPEC_RESTART_ADDR register, SPEC_PS register is copied atomically
to PS;

- SPEC_RFI_TERMINATE – the same except that
SPEC_TERMINATE_ADDR register is used as return address.

2.3 Memory Mat and Crossbar
A memory mat is the basic unit of storage in the Smart Memories system. In
addition to storing bits of information, it is also capable of performing very simple
bit manipulation operations on some of the stored bits. Depending on the
configuration, a memory mat can be used as simple local storage, a hardware
FIFO, or as part of a cache for storing either tag or data. Each Tile has 16
memory mats which are connected to processors and outside world by a
crossbar interconnect.

This section describes the internal architecture and operations of the memory
mat. It also describes how memory mats are aggregated and used to implement
more sophisticated storage structures, such as normal or transactional caches.
The operations of the crossbar and inter-mat communication network (IMCN),
which exchanges control information between different mats when implementing
composite storage structures are also explained in this section.

 Page 26

2.3.1 Memory mat organization
Figure 10 shows the internal architecture of memory mat at a high level. Major
blocks and the flow of data and address information are shown. Each block is
capable of performing a certain set of operations, which are described in the
more detail in the following sections.

Figure 10 Major Blocks of the Memory Mat

2.3.2 Data Array
Data array (or data core) is shown in Figure 11. It has 1024 entries of 32-bit
words and is capable of doing read, write and compare operations on the
accessed word. There is a 4-bit mask input into the array that allows each byte
within the 32-word to be written independently. In order to do comparison
operations, the array is equipped with a 32-bit comparator, which compares
contents of the word with the information provided on the Data In input and gives
out a Data Match signal. This data match signal is sent out to the processors
over the crossbar as well as passed to control array logic.

 Page 27

Figure 11 Data array. Solid lines are mat input/output signals while dashed lines
are internal control signals

In addition to the Address and Data In, data array receives a 3-bit Data Opcode
which dictates what operation should be performed on the addressed word.
Furthermore, write operations in the data array can be “Guarded” or
“Conditional”. Such operations are particularly useful when implementing caches
for example: the data storage can discard cache write operation if tag storage
repots a cache miss after tag comparison. For performing such operations, data
array receives two additional control bits, Guard and Condition, and can decide
to discard a write operation if either of the Guard or Condition signals is not
active. How the Guard and Condition signals are generated is discussed later in
this section. Table 2 lists all operations of the data array.

Data Opcode Operation

3’h0 – Nop Array is idle, not doing anything

3’h1 – Unused Equivalent to Nop

3’h2 – Read Addressed word is read

3’h3 – Compare Addressed word is read and compared with
Data In

3’h4 – (Guarded)
Write

Addressed word is written, only if Guard
signal is active

 Page 28

3’h5 – (Guarded)
Conditional Write

Address word is written, only if Guard and
Condition signal are both active

3’h6 –
Unguarded Write

Addressed word is written

3’h7 –
Unguarded
Conditional Write

Addressed word is written if Condition signal
is active

Table 2 Operations in data array

2.3.3 Control Array
Control array (or control core) is a 1024 entry 6-bit array, where every entry
corresponds to an entry in the data array (Figure 12). These 6-bits are called
meta-data bits or control bits associated with each 32-bit word. Control array is
dual-ported: it can do a read and a write operation in the same cycle. This allows
the control array to do atomic read-modify-write operation on the control bits. The
read address is always generated from the main address input of the mat. The
write address can either be derived from main address input or internally
generated when doing read-modify-write operations. An internal forwarding logic
bypasses write values to read port if subsequent read operation goes to the
address that was written previous cycle.

 Page 29

Figure 12 Control array. Solid lines are mat input/output signals while dashed
lines are internal signals generated inside mat

Control array is accessed along with the data array and is capable of doing the
same operations as data array: read, write and compare. Furthermore, it can do
read-modify-write and compare-modify-write operations by writing back new
values for the control bits supplied by an internal PLA logic. It receives the same
Guard and Condition signals as data array and has different flavors of write
operations. For compare operations, control array compares the contents of the
accessed entry with the Control In input. A Total Match signal is generated as
result. There is a 7-bit mask which indicates which control bits participate in the
compare operation and which control bits are ignored. MSB of the mask signal
indicates whether the result of the comparison in data array (Data Match) should
participate in generating the Total Match signal.

Three bits of the control array (bits 0-2) are accessible by column-wise gang
operations: a whole column can be set to one or zero in a single-cycle operation.
Also, one column of the array (bit 2) is capable of doing conditional gang write
operation: Bit 2 in each entry of the array can be written with one or zero, given
that bit 1 of the same entry is set to one. These operations are mainly used when

 Page 30

implementing transactional caches: all transactional modifications can be flushed
away in a single cycle.

Control array operations are dictated by a 4-bit Control Opcode input. Table 3
lists all the operations on the control array.

Control Opcode Operation Example Usage

4’h0 – Nop Array is idle, not doing anything

4’h1 – Unused Same as Nop

4’h2 – Unguarded
Read-Modify-
Write

Control bits are read and new values
are written back the next cycle

Cache line eviction

4’h3 – (Guarded)
Compare-Modify-
Write

Control bits are read and compared
with Control In. New values are
written back only if Guard signal is
active.

Change cache line
state to Modified in
case of cache
writes

4’h4 – Read Control bits are read and sent out on
Control Out

Reading cache line
state

4’h5 – Compare Control bits are read and compared
with Control In

Checking cache
line state (Valid,
etc.)

4’h6 – (Guarded)
Read-Modify-
Write

Control bits are read and supplied
on Control Out. New values are
written back only if Guard signal is
active

Coherence
operations
(invalidate,
degrade)

4’h7 – (Guarded)
Conditional Read-
Modify-Write

Control bits are read and sent out.
New values are written if both Guard
and Condition signals are active

4’h8 – (Guarded)
Write

If Guard signal is active, control bits
are written with the Control In value

4’h9 – (Guarded)
Conditional Write

If both Guard and Condition signals
are active, control bits are written
with the Control In value

4’hA – Unguarded
Write

Control bits are written by the value
of Control In

Updating cache
line state

 Page 31

4’hB – Unused Same as Nop

4’hC – Gang
Write

If Address 0, 1 or 2 is one, column 0,
1 or 2 of control array receives value
of Control In 0, 1 or 2.

Cache flush

4’hD –
Conditional Gang
Write

If Address 2 is one, bit 2 of each
entry receives value of Control In 2
Only if bit 1 in the same entry is one

Flush of
speculatively
modified lines

4’hE –
Conditional
Unguarded Write

Writes bits in the control array only if
Condition signal is active

4’hF – Unused Same as Nop

Table 3 Operations in control array

2.3.4 PLA block
A small PLA block allows mat to perform read-modify-write operations on the
control bits associated with every data word. The PLA operates on the control
bits read from control array and generates new values, which are written back to
control array the next cycle. Forwarding logic takes care of the case when the
same entry in the array is immediately read after being written, hence the read-
modify-write operations takes place atomically from the user’s point of view.

PLA logic is controlled by a 4 bit PLA Opcode signal which is supplied to the mat.
This opcode dictates the logic function that needs to be performed on the control
bits. In general, PLA logic receives the following inputs to operate upon:

Control [5:0]: six control bits from control array
Data match: result of the comparison operation in the data array
Total match: logical AND of Data match with Control match, which is result of

comparison operation in the control array
IMCN [1:0]: Inter-Mat Communication Network mat inputs (explained later)
PLA Opcode [3:0]: mat inputs
Byte Write: generated based on the write byte mask in the data array, indicates
whether the write operation writes the whole word or not

2.3.5 Pointer logic
Each memory mat is equipped with a pair of pointers which allows it to be used
as a hardware FIFO (Figure 13). An external output, FIFO select, dictates

 Page 32

whether mat should use the externally supplied “Address In” signal or use
internal pointers to generated address for data and control arrays. These pointers
are automatically incremented after each access: read and compare operations
increment head pointer, while write operations increment tail pointer. Increment
of the tail pointer can be guarded the same way that a write operation is guarded:
if the guard signal is not active, the pointer will not be incremented. An example
usage of guarded increment is described later in this section, when explaining
how a transactional cache is configured.

The depth of the FIFO also can be controlled via a configuration register.
Whenever size of FIFO grows to the value of the depth register and user tries to
write the FIFO, write operation is ignored and a FIFO Error output signal is
asserted. The same situation happens if user tries to read an empty FIFO. Also,
there is a threshold register which its value can be set by user. When the size of
the FIFO grows to this threshold, a separate FIFO Full output signal is asserted
to let the user know that FIFO is almost full.

Figure 13 Pointer logic. Solid lines are main inputs/outputs of the mat, while
dashed lines are internal signals

2.3.6 Guard and Condition Logic
As mentioned before, write operations in the data array and control array can be
controlled by any combination of a Guard and Condition signals. This allows a
mat to ignore write operations if necessary. The best example is when a
combination of memory mats is used to implement a cache: When a write
operation is issued to the cache, it should be ignored if cache line is not present
in the cache or if it is in the correct state (e.g. it is in Invalid or Shared state). In
this case, the hit/miss indication acts as the Guard signal, which orders the mat
to discard the write operation. Guard signal can be configured to be any function
of the IMCN_in inputs, while Condition can be any of the 6 control bits within the
control array. An example usage of the Condition bit is when performing a
synchronized store operation, which sets a Full/Empty bit after writing the data
word. In this case, one of the control bit is used to implement the Full/Empty bit; if

 Page 33

the Full/Empty bit is already set (data word is full), the write operation should be
discarded.

2.3.7 Crossbar and Inter-Mat Communication Network (IMCN)
There are 16 memory mats within each Tile which are accessible by the two
processors and from the outside of the Tile. Tile crossbar is the entity that
connects the two processors and outside interface to the memory mats. In
addition, memory mats have their own inter-mat communication network to
exchange control information when implementing composite storage structures
like caches.

Crossbar
The Tile crossbar (Figure 14) connects processors’ load/store unit and protocol
controller to memory mats. It performs the arbitration between different sources
when accessing mats and issued grants. It is also capable of broadcasting
operations to multiple mats, where an access is simultaneously sent to more than
one memory mat, if necessary.

Figure 14 Tile crossbar

Each part of the LSU (processor 0 and processor 1) has two independent ports
to the crossbar, one used for data accesses and the other for instruction
accesses. When accessing a mat LSU provides the mat with all necessary
signals: Address, Data In, Control In, Mask, FIFO select, Data Opcode, Control
Opcode and PLA Opcode. We call the combination of these signals a “mat
access”.

 Page 34

Each LSU port to the crossbar can access up to three independent set of mats:
tag mat(s), data mat(s) and FIFO mat. Any combination of these mat accesses
might be generated as result of the processor’s instruction or data access. The
data mat(s) contain actual data; they might be local scratchpads or mats that
store the data portion of cache line in a cache configuration. The tag mat(s)
contain the tag portion of the cache lines when mats are used to implement
caches. The FIFO access is used in TCC mode only and is explained later. Each
one of the data, tag and FIFO accesses have a 16-bit mat mask, which tells the
crossbar which mats the access should be sent to.

The crossbar also acts as an arbiter, which resolves conflicts between the
accesses from the two processors and protocol controller. The protocol controller
is given priority at all times and its accesses always go through without being
stalled. Since protocol controller might access memory mats in all of the four
Tiles simultaneously, having higher priority enables it to statically schedule its
accesses to memory mats and simplifies its internal pipelines. A fair round-robin
arbitration mechanism resolves conflicts between the two processors and stalls
the losing processor.

As shown in Figure 14, protocol controller has two independent ports for
accessing the memory mats within the Tile. Like processor ports, each of these
ports can broadcast an access to any number of memory mats independently.
Note that crossbar assumes that these two ports never try to access the same
memory mats at the same time, therefore there is no arbitration mechanism
implemented between these two ports.

Inter-Mat Communication Network (IMCN)
Memory mats can be used to implement composite storage elements such as
caches with different parameters such as size, ways and line size. In such
configurations, some of the mats are used to store tag portion of the cache line
as well as cache line state information, while other mats are used to store the
data. In order for such configuration to work correctly, some control information
needs to be exchanged between tag mats and data mats. For example, the
hit/miss information should to be transmitted from tag mats to data mats, such
that the data mats can ignore the operation if there was not a hit in that particular
cache way. IMCN is a small network that allows mats to exchange such
information efficiently.

Each mat supplies two bits to inter-mat communication network (IMCN_out [1:0])
and receives two bits from it (IMCN_in [1:0]). A configuration register within the
mat dictates what values mat sends out on each of the IMCN outputs
independently, which can be any of the following signals or their logical inverse:

Any of the control bits
Data Match (from data array)
Total Match

 Page 35

A set of configuration registers within the IMCN decides what values are supplied
to memory mats on their IMCN_in inputs. Figure 15 shows the IMCN logic for
generating these inputs: For each bit of the IMCN_in per memory mat, a mask
register decides which mats participate in generating that input. Then a logical
OR operation is performed on all the participating signals and result is sent to the
receiving memory mat. This way, each mat can receive control information from
any other mat or combination of mats on any of its IMCN_in inputs.

Figure 15 IMCN_in signal generation for each memory mat

2.3.8 Examples
In this subsection, configuration and operation of memory mats are described by
two examples. The first example shows how to use a set of memory mats to
implement a 16KB, 2-way set associative cache, while second example shows
the configuration and operation of a transactional cache which is capable of
tracking and storing speculative modifications.

A 2-way set associative cache
Figure 16 shows how a 2-way set associative cache is implemented using six
memory mats. Each way of the cache consists of two mats storing the data part
of the cache line and one mat storing the tag portion as well as cache line state
information. Hit/miss information is sent across the IMCN from each tag mat to
the corresponding data mats. Whenever LSU issues a cache operation, crossbar
routes the tag access to both tag mats and data access to appropriate data mats
(depending on the offset within the cache line, data access might go to Data 0 or
Data 1).

 Page 36

Figure 16 A sample 2-way set associative cache configuration

Meta-data bits in the tag mats are used to encode the state of the cache line
according to the coherence protocol as well as information necessary for
implementing desired line replacement policy. Assuming a simple MESI
coherence protocol and Not-Most-Recently-Used replacement policy, the
encoding cache line state is as follows:

Bit 0: unused
Bit 1: Shared/Exclusive
Bit 2: Valid/Invalid
Bit3: Modified
Bit4: MRU (Most Recently Used)
Bit 5: Reserved (Indicates a pending refill on this cache line)

All tag and data mats in the cache are accessed simultaneously by LSU. Tag
mats perform a compare operation on both data and control arrays: Data In
signal brings in the tag portion of the cache line address, while Control In brings
the desired line state for comparison. The Mask signal is used to discard
unwanted bits of the control array, for example when doing a cache read, value
of the S/E or MRU bits is not important. The result of the comparison is reported
by each way on its Total Match output and is returned to the LSU by crossbar.
The Total Match output of each tag mat is also transmitted to its corresponding
data mats over the IMCN so that data mats could ignore the operation if their
associated tag mat did not have a hit. PLA operation within the tag mat updates
the control bits accordingly: for example, in case of a cache write, Modified bit is
turned on whenever there is a cache hit.

 Page 37

Data array in data mats receives a read or guarded write operation (depending
on type of cache access, Load or Store) from crossbar. In case of read, each
data mat returns the contents of the addressed location back to crossbar and
crossbar selects the appropriate word depending on the hit signal from each tag
mat. In case of write operations, the data array receives a guarded write
operation and the Guard signal is configured to be the hit/miss signal received on
the IMCN from the associated tag mat, hence if the corresponding tag mat does
not report a hit the write operation is discarded and contents remain untouched.

The exact configuration of the cache (such as which mats are used for tag
storage and which mats are used for data storage, number of ways in the cache,
etc.) as well as the details of tag and data accesses (such as Data Opcode,
Control Opcode, PLA Opcode, Mask, etc.) are stored in the configuration
registers inside the Load/Store Unit and are discussed in detail in the next
section.

Transactional cache
A transactional cache in the Smart Memories stores the speculative writes issued
by the transaction. Data of the speculative write is stored in the data mats of the
cache while a separate mat is used to store the address of all speculative writes.
This list of addresses is then used by the protocol controller to commit all such
modifications to main memory after transaction finishes. Figure 17 shows an
example of a two way transactional cache.

The mapping of control bits for representing cache line state and line
replacement information is as follows:

Bit 0: SR (Speculatively Read – indicates that the line has been read by the
transaction)

Bit 1: SM (Speculatively Modified – indicates that the line has been speculatively
modified by the transaction)

Bit 2: Valid/Invalid
Bit 3: Modified
Bit 4: MRU (Most Recently Used)
Bit 5: Reserved

In addition, the control bits in the data mats are also used to mark each word
independently as speculatively read or written:

Bit 0: SR (Speculatively Read)
Bit 1: SM (Speculatively Modified)

 Page 38

Figure 17 A transactional cache

The basics of the operations for the transactional cache are essentially the same
as normal cache; the only difference is in that an additional memory mat is used
in FIFO mode to store all the addresses written by the transaction. Whenever
LSU issues a cache write operation, it also sends a FIFO access to the Address
FIFO along with the tag and data accesses. Address FIFO receives the address
of the word on its Data In input and writes it into the data array. The IMCN and
Guard logic are configured such that the FIFO accepts and writes the address
only if there is a cache hit and the word is not already marked as speculatively
modified. This way, a word might be written multiple times during the transaction
execution, but its address is placed only once in the Address FIFO.

In order to implement the guard logic, each tag mat sends the inverse (Not) of its
Total Match signal on the IMCN_out, while each data mat sends out its SM bit. A
logical OR operation is performed in the IMCN and FIFO mat receives (~Total
Match | SM) from each way of the cache on one of its IMCN_in inputs. The
Guard signal inside the FIFO mat is then configured according to the following
table:

Guard IMCN_in[1] IMCN_in[0]

1 0 0

Address
FIFO

Tag

Address
FIFO

Data 0

Address
FIFO

Inter-mat Communication

1 2 3

Data 1

1) Total Match sent out by tag mats to the corresponding data mats
2) ~Total Match sent out to be ORed with SM bits from the data mat

of the same way and then sent to FIFO
3) SM bits sent out from data mats to be ORed with ~Total Match

from the same way and sent to FIFO

 Page 39

1 0 1

1 1 0

Table 4 Guard function for the Address FIFO

After the transaction ends successfully, protocol controller uses the contents of
the Address FIFO to send all transaction’s modifications to main memory and
hence commit its state. SR and SM bits in both tag and data mats are flash-
cleared using column-wise gang operations and a new transaction can start.

If a transaction needs to be restarted, all its speculative modifications have to be
discarded. This is simply performed using conditional gang write operation in the
control array: Valid bit in the tag mats is conditionally flash-cleared if SM bit is
set, which invalidates all speculative modifications inside the cache. After that,
SM and SR bits in both data and tag mats are flash-cleared and cache will be
ready for transaction to restart.

2.4 Load/Store Unit (LSU)
The Load/Store Unit (LSU) connects processor cores to the Tile crossbar and
provides flexibility in performing memory operations. It also has an interface to
communicate with the protocol controller sitting outside the Tile. The LSU keeps
details of the Tile’s memory configuration as well as the exact behavior of each
memory operation issued by the processor in a number of configuration
registers. This section describes the major functions of the LSU, provides an
overview of its configuration capabilities, and gives details of its communication
with the protocol controller.

2.4.1 Interfaces
Figure 18 shows the interfaces of the LSU. On the bottom there are processor
ports: instruction, data and TIE. The TIE port is used for issuing special memory
operations which are added to processor’s instruction set using TIE language.
Data and TIE ports of the processor are 32 bits wide, while the instruction port is
64 bits wide. Each processor has its own separate ports to the LSU. On the top
side, LSU connects to the crossbar ports and on the left to the protocol controller.
Note that the two processors share the single interface to the protocol controller.

 Page 40

Figure 18 Interfaces to the Load/Store Unit

Processors are configured such that they always activate only one of their data
or TIE ports in a cycle. However, accesses from the instruction port can occur
simultaneously with a data or TIE port access. As indicated in the figure, the
LSU also provides a mechanism to stall processors upon events such as cache
misses or direct accesses to non-local memories (e.g. in other Tiles or Quads),
which have to go through the protocol controller.

2.4.2 Tile memory configuration
As mentioned in the previous section, memory mats in the Tile can be configured
differently depending on the memory model. There are two structures in the LSU
that keep track of this information: the cache configuration registers and the
segment table. The two processors in the Tile each have their own set.

A processor’s instruction and data caches are specified by a collection of five
registers inside the LSU: one register describes the main parameters of the
cache, while four registers store information of up to four cache ways. The details
of these registers are described below:

i/d_cache_way0-3_info
Bit [0]: way enable
Bit [4:1]: tag mat number
Bit [8:5]: starting data mat number

 Page 41

i/d_cache_info
Bit [1:0]: unused
Bit [3:2]: number of data mats in each way
Bit [5:4]: cache line size
Bit [7:6]: number of rows per cache line
Bit [11:8]: FIFO mat ID (for TCC caches only)

Each way of the cache, as described by the examples in the previous section,
consists of a tag mat and a number of data mats. Each way info register
determines whether a specific way is enabled in the cache and which mats serve
as its tag and data storage. When a cache way has more than one data mat, only
the ID of the first data mat is stored in the register; other data mats simply follow
the starting mat sequentially. The number of data mats in each cache way is
stored in bits 3-2 of the cache info registers.

Size of the cache line can be 16, 32, 64 or 128 bytes and is stored in bits 5-4 of
the cache info register. Larger cache lines span multiple data mat rows, so the
number of rows per cache line is specified separately. For example, a cache with
two data mats in each way and a line size of 16 bytes will use two rows of the
mats per line, as shown in Figure 19. Thus, each index of the tag mat is
associated with two different indices of the data mats and hence the LSU
calculates tag mat index and data mat index separately.

Figure 19 Association of tag mat indices with data mat

In case of TCC caches, bits [11:8] of the cache info register specify the mat
which is used as the Address FIFO.

2.4.3 Memory map and address translation
Figure 20 shows the virtual and physical address spaces of the Smart Memories
system. Both address spaces are 4GB and are divided into 512MB segments.
Processors issue requests in the virtual space, which are then translated into
physical addresses for use both inside and outside of the Tile.

 Page 42

The virtual address space is divided to three distinct sections: the first four
segments, (0GB-1GB) are not used at all; processors never generate any
memory accesses to this region. Segments 4-7 (1GB-2GB) are used by the
instruction port to access code. Remaining segments (2GB-4GB) are used for
accessing data. The TIE port only issues operations to the data address space,
except for instruction pre-fetch (IPF) and instruction cache control (IHI, III)
operations which are issued to instruction address space.

Physical address space is divided into four distinct sections: segments 0 and 1
are considered unused and any access to these segments will generate an
exception for the processors. Segment 2 contains all configuration
registers/memories within the system. Segment 3 maps all the local memories in
all the Tiles/Quads. Segments 4-15 are mapped to off-chip, main memory.

Figure 20 Virtual and physical address spaces

Translation from virtual address space to physical address space is carried out
by a 12-entry segment table. This table also provides a basic memory protection
mechanism and throws exceptions to processors in case of address translation
error or violation of the protection. Segments can be mapped either to off-chip
memory or to on-chip memory in any of the Tiles/Quads (memory mats). When
mapping a segment to on-chip memory, the actual size of the segment is
restricted by the segment table, since the available on-chip memory is much less

 Page 43

Don Stark
Why not?

Don Stark
Why are these unused?

than the default segment size (512MB). Segment table also indicates whether a
segment is cached or not. For accesses that go to cached segments, the
translated address is used to access the instruction or data caches. Note that the
system does not allow caching of any segment that is mapped to on-chip
memory; only segments mapped to off-chip memory can be cached. Also no
segment is allowed to be mapped to configuration space. This space is solely
accessed by special memory operations (RawLoad/RawStore) issued by the TIE
port, which ignore the segment table and do not perform any translation. Figure
21 illustrates a segment table entry; the description for each field is as follows:

R: Read permission. If the bit is not set, read access to this segment will
generate an exception.

W: Write permission. If the bit is not set, write accesses to this segment will
generate and exception.

OT: On-Tile. Forces the access to go to on-Tile memory mats (ignores the bits of
address that indicate Quad ID and Tile ID). Used for un-cached accesses
only.

C: Cached. Indicates that the segment is cached and therefore access should go
to a cache structure.

Re-map: Used for cached or off-Tile addresses. The upper four bits of the virtual
address (bits 31-28) are replaced with these bits to produce physical
address.

Base: Used when accessing on-chip memories only. Provides the base mat ID
where segment starts.

Size: Used when accessing on-chip memories only. Size of the segment in
number of mats. If the address exceeds segment boundary an exception
is thrown to the issuing processor.

Figure 21 A segment table entry

Figure 22 illustrates the breakdown of the address bits when accessing on-chip
segments. The re-map value in the segment table entry should be 3 in order to
map the virtual address to on-chip memory. Quad ID, Tile ID and Mat ID uniquely
identify the accessed memory mat. These values are computed by adding the 12
bits of the Base field to bits of 23-12 of virtual address. The mat index is passed
to the memory mat as its address input.

 Page 44

Figure 22 Breakdown of address bits for accessing on-chip memories

In Error! Reference source not found. allocation of the configuration space
(physical segment 2) to different modules in the system is shown. The
configuration space covers configuration registers within memory mats, Tile LSU,
crossbar and IMCN, protocol controllers and memory controllers.

2.4.4 Access translation
Instruction, data, and TIE ports of the processor issue read and write accesses to
the LSU. These accesses must be translated into the appropriate mat opcode
and control signals. Translation takes place according to the following criteria:

Access port (Instruction, Data or TIE)
TIE opcode (for TIE port accesses) or Read/Write signal (for instruction and data

accesses)
Cached/Un-cached access (extracted from segment table)

As mentioned previously, for each instruction, data or TIE port operation issued
by processors, up to three different sets of mat accesses can be generated: tag
access, data access and FIFO access. Figure 24 shows the translation logic for
processor’s TIE port. Translation logic for processor’s instruction and data port is
the same; the only difference is that instead of the TIE opcode, a read/write
signal is passed to the translation logic.

 Page 45

T ile 0 m em ory m at 0 ..15
configuration space

T ile 1 m em ory m at 0 ..15
configuration space Q

ua
d

0
Q

ua
d

63

0 .5 G B

0.5 G B + 4*64KB

T ile 2 m em ory m at 0 ..15
configuration space

T ile 3 m em ory m at 0 ..15
configuration space

T ile 0 m em ory m at 0 ..15
configuration space

T ile 1 m em ory m at 0 ..15
configuration space

T ile 2 m em ory m at 0 ..15
configuration space

T ile 3 m em ory m at 0 ..15
configuration space

0.5 G B + 2*64*4*64KB

0.5 G B + 2*64*4*64KB
+ 4*64KB

Protocol contro ller
configuration space

Q
ua

d
0

Q
ua

d
63P ro tocol contro ller

configuration space

M em ory contro ller
configuration space

0.5 G B+3*64*4*64KB

0.5 G B + 4*64*4*64KB

0.5 G B + 64*4*64KB
T ile 0 configuration space

T ile 1 configuration space Q
ua

d
0

Q
ua

d
63

0 .5 G B + 64*4*64KB
+ 4*64KB

Tile 2 configuration space

T ile 3 configura tion space

T ile 0 configuration space

T ile 1 configuration space

T ile 2 configuration space

T ile 3 configura tion space

Figure 23 Allocation of configuration address space

 Page 46

Figure 24 Access translation for the TIE port

Each mat access is comprised of the following set of signals:

Address: identifies the entry which should be accessed in the mat.
Data opcode: specifies data array operation.
Control opcode: specifies control array operation.
PLA opcode: specifies logic function of the PLA.
FIFO select: indicates whether mat is used as a FIFO (ignore the Address input

and use internal pointers).
Data In: data value that is supplied to data array. It can be a write data for data

mats, or tag values for tag mats (to do tag compare).
Control In: value of the control bits; for tag mats, it is the desired cache line state

(Valid, Exclusive, etc). If the line is not in the desired state a cache miss
will be reported.

Mask: For tag mats it indicates the control bits used in tag comparison. For data
mats it is the byte mask used for performing the write in the data array.

FIFO access is generated only in the transactional mode, when mats are
configured as transactional cache. Tag access is generated only if the address
goes to a cached segment. Data access is always generated regardless of
whether the operation is cached or un-cached. The only exception is cache
control instructions issued by the TIE port (DHI, DHWBI, DHWB, DII, DIWBI, and
DIWB): They only generate the tag access and no data or FIFO accesses.

A set of configuration registers inside the LSU convert the processors memory
operations into appropriate set of mat signals. Each processor has its own set of

 Page 47

registers for doing such translation. These registers are loaded with the default
values upon reset, but can be written later to change the way in which a specific
memory operation behaves. They usually are changed when switching to a
different operational mode, for example switching to transactional mode from
normal shared memory mode.

2.4.5 Communication with protocol controller
The Load/Store Unit is also responsible for communicating with the shared
protocol controller located outside the Tile. The LSU uses the protocol controller
to complete memory operations such as refilling caches or directly accessing a
memory location outside of the Tile (in other Tiles, other Quads, or even in off-
chip memory). Since there is only a single communication channel between the
LSU and protocol controller, requests from instruction and data ports of the two
processors have to go through an arbitration phase. The arbitration is done in
round-robin fashion. Each request is tagged with a four bit sender ID signal which
indicates the originating Tile ID, processor ID and port ID of the request (TIE port
is considered as part of the data port for this purpose).

A small communication queue stores the requests from each port/processor to
the protocol controller. After arbitration between the four queues, the winning
request is sent to protocol controller, as shown in Figure 25. Protocol controller
explicitly acknowledges the request after receiving and storing it locally. It is only
after receiving the acknowledge signal that the LSU removes the request from its
queue and moves to the next request.

Figure 25 Communication queues to protocol controller

Table 5 lists all the communication messages between the LSU and protocol
controller. Most of these require a reply back to LSU. When replying, protocol

 Page 48

controller sends back a four bit Target ID signal indicating the processor and
port.

I
D

Message Type Needs
Reply?

Description

0 Off-Tile access Yes Direct access to a memory outside
Tile

1 Cache miss Yes Cache miss

2 Upgrade miss Yes Upgrade miss (need ownership only)

3 Sync miss (un-
cached)

Yes Synchronization miss, un-cached
address

4 Wakeup (un-cached) No Wakeup notification, un-cached
address

5 Wake up (cached) No Wakeup notification, cached address

6 Sync miss (cached) Yes Synchronization miss, cached
address

7 TCC FIFO full Yes Address FIFO in TCC cache is full

8 Hard interrupt clear No Acknowledgement that LSU has
received hard interrupt

9 Cache control Yes Cache control operation (DHI,
DHWB, DHWBI, DII, DIWB, DIWBI,
IHI, III)

1
0

Pre-fetch miss Yes Cache miss for a pre-fetch operation

Table 5 Messages between LSU and protocol controller

 Page 49

2.5 Reconfigurable Protocol Controller
The protocol controller (or cache controller) is a shared configurable controller
placed among the four Tiles within a Quad. It has interfaces both to memory
mats within each Tile as well as to Tile Load/Store units. It is also equipped with
a generic network interface to communicate with protocol controllers in other
Quads or to off-chip memory controllers, and it acts as the gateway of the Quad
to the rest of the system. The protocol controller provides support for the Tiles by
moving data in and out of the memory mats and by implementing the desired
memory access protocol.

Instead of having dedicated hardware to implement a specific memory protocol,
the controller implements a set of primitive memory operations and provides a
flexible means for combining and sequencing them. Handling a memory request
translates to executing a sequence of primitives specific to a given protocol. This
section explains the architecture of the protocol controller, describes the set of
basic memory operations implemented, and shows how they are combined to
implement a desired memory protocol.

2.5.1 Architecture
As mentioned, the controller executes a set of basic memory operations. These
operations are divided into four main categories, as described below:

Data movements: The protocol controller transfers data between any two mats
regardless of their location. It also sends and receives data over the
generic network interface to other Quads or to main memory controllers.

State updates: When implementing a memory protocol such as coherence, the
state information associated with the data needs to be read and updated
according to the protocol rules. Since protocol controller has access to all
four Tiles, it is also responsible for reading state information, using this
information to decide how to proceed with the memory request and if
necessary, updating the state according to the specified memory protocol.

Tracking and serialization: When implementing some memory protocols such as
cache coherence, memory requests issued to same addresses need to be
serialized to preserve correctness. Serialization naturally belongs in the
protocol controller because all memory requests go through it. In addition,
the protocol controller keeps tracking information about all outstanding
memory requests from all processors.

Communication: The protocol controller has a set of interfaces to communicate
with Tile processors (via LSU) and other Quads and memory controllers in
the system.

In addition to these basic operations, there are a few peripherals inside the
controller which are used for special operations: an interrupt unit is dedicated to
assert interrupt requests for all Tile processors and to implement interrupt state

 Page 50

machines. A configuration block provides a configuration interface for the
controller such that all its internal configuration registers and memories can be
accessed by an outside entity such as JTAG controller. There are also a set of
eight DMA channels which can generate memory transfer requests such as
strided/indexed gather/scatter operations.

Figure 26 High level architecture of protocol controller

Figure 26 displays the high-level architecture of the protocol controller. In light
gray are blocks that form the main execution core of the controller: tracking unit,
state update unit and data movement unit. In dark gray are the state and data
storage used by these units. These main execution units form a pipeline: they
accept requests for performing operations from one another or from interfaces,
execute the desired operation and pass the results to the next unit.

Internal operations of the units are controlled by a horizontal microcode which
can be altered to change the behavior of the block in response to a request. The
details about the internal organization and control of each unit as well as their
functionality are discussed in following subsections.

 Page 51

2.5.2 Request tracking and serialization (T-Unit)
The Tracking Unit acts as the entry port to the execution core; it receives all
request/reply messages from processors, network interface and internal DMA
channels. For each request, an entry in the appropriate tracking structure is
assigned and the request information is stored, after which it is passed to the
next unit.

There are two separate tracking data structures managed by the tracking unit:
Miss Status Holding Registers (MSHR), are used to store processor cache miss
information as well as coherence requests from memory controllers. MSHR has
an associative lookup port which allows the tracking unit to serialize new cache
misses against already outstanding ones and enables optimizations such as
request merging. Un-cached request Status Holding Registers (USHR) are
separate but similar structures used to store information about a processor’s
direct memory requests for any locations outside of its own Tile. It also keeps
information about outstanding DMA transfers generated by DMA channels.

The Tracking Unit consists of two independent parallel paths, one for handling
cache miss requests and the other one for handling un-cached and
miscellaneous memory requests (Figure 27). Upon receiving a new cached
request, the cached request handling section (CT) allocates a new MSHR entry
and looks up MSHR for other requests to the same memory block that might be
already outstanding. If no collision with an already outstanding request is
detected, the request is written into the MSHR during the next pipeline stage. If a
request cannot be accepted due to collision with an already existing request or
because MSHR structure is full, the Tracking Units returns a negative
acknowledgement (Nack) and the sending party must retry the request later.
When receiving a reply for an outstanding request, CT reads information of the
original request from MSHR and passes it to next unit to complete processing.

The un-cached request handling part (UT) acts more or less the same way: it
allocates USHR entries for incoming requests and writes them into the USHR.
After receiving replies, it reads request information from the USHR ane passes it
to the next stage for further processing. If the USHR becomes full, no more
requests are accepted and Nacks are returned. Separate round-robin arbiters sit
in front of the CT and UT paths and select the requests to be accepted by each
path.

 Page 52

Figure 27 Tracking and serialization unit

2.5.3 State Updates (S-Unit)
State update unit is in charge of reading and updating the state information
associated with data, such as cache line state, cache tags, etc. Figure 28 shows
the internal organization of the S-Unit; it is a four stage pipeline with a small
output queue sitting at the end. A round robin arbiter at the input selects the next
request to be accepted by S-Unit.

Figure 28 State update unit

The Access Generator block in the first stage of the pipeline generates all
necessary signals for accessing Tile memory mats. It can generate two
independent accesses to memory mats and is capable of accessing either a
single Tile or all Tiles simultaneously; for example, when handling a cache miss
request, it can evict a line from the requesting processor’s cache and update the
state and enforce coherence invariance in other processors’ caches. Generated
accesses are flopped and sent to memory mats in the next cycle. All the
necessary control signals for accessing memory mats (e.g. data opcode, control

 Page 53

opcode, PLA opcode, mask, etc.) are stored in a microcode memory inside the
access generator block which is indexed by the type of the input request to S-
Unit, and hence can be adjusted according to desired memory protocol.

The Decision Block at the last stage of the pipeline receives the value of all
control bits (meta-data bits) read from memory mats, as well the Total Match and
Data Match signals and determines the next step in processing the request. For
example, when serving a cache miss request, if a copy of the line is found in
another cache, a cache-to-cache transfer request is sent to D-Unit. Or if the
evicted cache turns out to be modified, a write back request is generated. The
decision making is performed by feeding the collected state information into a
TCAM which generates the next step of processing step and identifies the unit
which should receive the request. The data and mask bits inside TCAM can be
altered according to any desired protocol.

A small output queue buffers requests before sending them to other units. The
size of this buffer is adjusted such that it can always drain the S-Unit pipeline,
preventing pipeline stalls when a memory mat access is in flight. The arbiter logic
in front of the pipeline always checks the availability of buffering space in the
output queue and does not accept new requests if there is not enough free
entries in the queue.

2.5.4 Data Movements (D-Unit)
Figure 29 shows the internals of the Data Movement Unit. Like previous units, an
arbiter first decides which request should be accepted. The Dispatch Block
determines which Tiles should be accessed as part of request processing. Four
data pipes associated with the four Tiles receive requests from their input queues
and send the results to their output queues. A small finite state machine
generates replies for processors.

 Page 54

Figure 29 Data Movement Unit

The Dispatch Unit decides which Tiles are involved in a data movement
operation and sends appropriate memory read/write requests to the appropriate
data pipes. For example, while a simple cache refill requires writing data to
memory mats of one Tile, a cache to cache transfer involves reading data from
the source cache first and writing it to the destination cache with appropriate
read/write scheduling. The Dispatch Unit uses an internal TCAM to determine the
type and schedule of appropriate data read/writes for each data pipe and places
them into data pipe input queues. It also initiates the processor reply FSM when
needed.

Figure 30 is a diagram of the data pipe. It has a port to memory mats in the
associated Tile as well as a read and write port to line buffer. The access
generator in the first stage generates necessary control signals to read/write
memory mats and line buffer. Similar to the S-Unit, all necessary signals are
extracted from microcode memory within the access generator and can be
changed to implement any type of access. The condition check block at the last
stage receives the meta-data bits associated with the each of the accessed
words and can match them with a predefined bit pattern. This allows the data
pipe to generate the request for the next unit according to the extracted bit
pattern. For example, when implementing fine grain locks, one of the meta-data
bits in the control array of the mat is used as a Full/Empty bit. The Data pipe
decides whether to reply to the processor or to send a synchronization miss
message to the memory controller depending on the status of the lock bit.

A shallow output queue ensures that all the operations in the data pipe can be
drained such that a memory mat access need never be stalled in flight. The
dispatch unit always checks the availability of the space in the output queues of
the data pipes which receive memory read/write operations and does not issue
new operations unless there is enough buffering space in the output queues.

 Page 55

Figure 30 Data pipe

2.5.5 Interfaces
The Protocol Controller has dedicated interfaces to communicate with processors
as well as memory controllers and other protocol controllers. A dedicated
processor interface receives requests from and returns replies to Tile processors
(LSU) and chooses which request is passed to the execution core. Requests
from either port of each processor are stored internally inside the processor
interface and are passed to the T-Unit after winning arbitration (Figure 31). A
bypass path allows a recently received request to be sent out directly if there is
no other request waiting in the processor interface.

Figure 31 Processor interface logic

The network interface consists of separate receiver and transmitter blocks which
operate independently. Figure 32 shows the network transmitter; a priority queue
stores the requests for outbound transmissions until the transmitter is ready to
send. Transmitter logic composes packet headers based on the request type and
attaches the data to the header. In case of long packets, data is read from the
line buffer and immediately placed in the outgoing queue. Since the IO clock rate
can be configured to be slower than the system clock, a rate control queue
adjusts the rate between the transmitter’s internal operation and output pins.

The priority queue in front of the transmitter receives a virtual channel number
along with the packet request. It considers priorities between virtual channels and
selects the next request for transmission. The priority queue is sized such that it

 Page 56

can absorb and store all active requests within the execution core. This
guarantees that even when the all the outgoing links are blocked (due to back
pressure, for example), all active requests in the execution core that need to
send out a packet can be safely drained into the queue, releasing the execution
units and preventing deadlock.

Figure 32 Network transmitter

The network receiver block is shown in Figure 33. There are eight buffers within
the receiver that each store packet from a virtual channel. A decoder detects the
virtual channel of the received flit and places it in the appropriate virtual channel
buffer. After arbitration, header of the selected packet is decoded and a request
is generated for execution core based on the packet type. In case of long
packets, data words are first written into the line buffer before the request is
passed to the execution core.

Figure 33 Network receiver

2.5.6 Peripherals
In addition to the execution units and interfaces, the protocol controller has a
number of DMA channels and a small interrupt unit. Eight DMA channels
generate memory transfer requests that are entered into the execution core via
the tracking unit. Channels are capable of generating continuous copy requests,
as well as strided and indexed gather/scatter operations. Each DMA channel is
essentially a micro-coded engine which generates requests according to the
loaded microcode. This makes the DMA engine a very flexible request generator
which can be used by the user. For example, after completion of a transfer, DMA

 Page 57

channels are capable of generating interrupt requests for processors who are
waiting for data movement, or release lock variables on which processors are
waiting. Another example is the use of DMA channels in transactions: DMA
channels are used to commit the speculative modifications of the completed
transaction. They extract addresses from the Address FIFO of the transactional
cache, read data words from the cache itself and send them to other caches and
to main memory.

A small interrupt unit connects the protocol controller to the interrupt interface of
all processors. Writing into eight special registers inside this unit will generate
interrupts for the corresponding processors. In addition, this interrupt unit
implements a small state machine for handling a special type of interrupt called a
“hard” interrupt. When a hard interrupt is issued it forces the receiving processor
to come out of data access stall immediately2 Since processors might be stalled
on synchronization accesses (sync misses), a hard interrupt also has to kill any
such outstanding operations before forcing processor out of stall. The state
machine inside the interrupt unit sends a cancel request to the execution core,
which ensures that there are no outstanding synchronization misses from a
specific request.

2.5.7 Example: MESI coherence
This section describes a simple example of implementing a MESI coherence
protocol inside the Quad. It is assumed that processors within a Tile share both
instruction and data caches and the system consists of only one Quad. The
Protocol Controller is responsible for refilling Tile caches and enforcing
coherence invariance. For this purpose, a set of operations is defined for each
execution unit and the whole protocol is implemented by composing these
operations. First, we consider the messages the protocol controller receives from
other blocks of the system. Table 6 lists all the messages along with their
description.

Message
Type

Source Description

Read miss Tile Cache miss for a read (non-modifying)
request

Write miss Tile Cache miss for a write (modifying) request

Upgrade Tile Request for cache line ownership

2 If processor is stalled for an instruction access, such as an I-cache miss it will wait until the
access is completed and then will receive the interrupt.

 Page 58

miss

Refill Memory
Controller

Reply to a cache miss that was sent out
previously. Brings in the cache line.

Table 6 Request/Reply messages received by protocol controller

As mentioned before, all request/replies start processing from the tracking unit
(T-Unit). Table 7 lists the request types defined for T-Unit along with their
operation, as well as what type of request is passed to the next unit.

Type Operation Next
Unit

Next Type

CT-Read
miss

- Check for collision with already
outstanding request

- Allocate MSHR entry

- Write request information to
MSHR

S-Unit S-Read miss

CT-Write
miss

Same as above S-Unit S-Read miss

CT-Upgrade
miss

Same as above S-Unit S-Upgrade
miss

CT-Refill Read request information from
MSHR

D-Unit D-Refill

Table 7 T-Unit operations

As the table shows, cache misses are passed to S-Unit which searches other
Tiles to find copies of the request cache line and take appropriate coherence
action. Refills are given to D-Unit to write the data into the cache. Table 8 lists
the operations of the S-Unit. It specifies what type of access is sent to cache of
the requesting Tile as well as to caches in other Tiles and what operation is sent
to the next unit based on the state information returned after cache access.

Probe access searches all the ways of a cache for a cache line and brings back
the state in which the cache line is found. Degrade access also does the same,
but uses the mat PLA to change the state of the cache line (if found in the cache)
to shared state. It returns the old state of the cache line. Invalidate access uses
PLA to change cache line state to invalid, but otherwise is the same as degrade.
Evict access reads both data and meta-data bits of an index in a specified cache
way, and meanwhile uses PLA to set the Reserved bit in the control array. Tag

 Page 59

write operation is a plain write to both data and meta-data bits to fill in new tags
and line state information.

Since both processors in the Tile share the first level cache, the Protocol
Controller might receive cache misses from both processors. In such cases, the
first cache miss brings in the cache line and refills the cache. To avoid refilling
the cache for the second time, a probe access is issued to inquire the most
recent state of the cache line. If the line turns out to be in the cache in
appropriate state, then only the critical word requested by the processor is read
or written and a reply is sent back to requesting processor.

Tile Accesses Returned
State

Type

Orig. Other Orig. Other

Next
Unit

Next Type

S, E,
M

- D-Unit D-Critical word
access

I S, E,
M

D-Unit

S-Unit

D-Cache-to-cache
transfer

S-Evict

S-Read
miss

Probe

Degrad
e

I I N-Unit

S-Unit

N-Read miss

S-Evict

S, E,
M

- D-Unit D-Critical word
access

I S, E,
M

D-Unit

S-Unit

D-Cache-to-cache
transfer

S-Evict

S-Write
miss

Probe Invalida
te

I I N-Unit

S-Unit

N-Write miss

S-Evict

S, E,
M

- D-Unit D-Critical word
access & update tag

S-Upgrade
miss

Probe Invalida
te

I - N-Unit

S-Unit

N-Write miss

S-Evict

 Page 60

S-Evict Evict - M - D-Unit D-Writeback

S-Evict Evict - I, S, E - - -

S-Tag write Tag
write

- - - - -

Table 8 S-Unit operations

Table 9 lists the D-Unit operations. The tile access column explains what
accesses are sent to Tile memory mats. In some accesses, only a single word in
the cache is accessed, while in others the whole cache line is read or written.
According to type of the request, the dispatch block inside the D-Unit decides
whether to activate one or more data pipes to complete the data transfer. In case
of refill and writeback operations, the other end of the transfer is the network
interface, which will write data to or read data from the line buffer.

Tile Access Line Buffer Type

First Second First Second

Next
Unit

Next
Type

D-Critical word
access

Word
access

- - - P-
Unit

Reply

D-Critical word
access & update
tag

Word
access

- - - S-
Unit

P-
Unit

S-Tag
write

Reply

D-Cache to cache
transfer

Line
Read

Line
Write

Write Read S-
Unit

P-
Unit

S-Tag
write

Reply

D-Writeback Line
Read

- Write - N-
Unit

N-
Writeback

D-Refill Line
Write

- Read - S-
Unit

P-
Unit

S-Tag
write

reply

Table 9 D-Unit operations

 Page 61

Figure 34 shows the processing steps for a read miss, when the evicted cache
line is not modified and a copy of the missing line is found in another Tile. In the
first step, processor interface receives cache miss request and passes a CT-
Read miss request to the T-Unit. After allocating MSHR and writing request
information, T-Unit sends S-Read miss request to S-Unit. S-Unit searches the
Tile caches, ensures that requesting cache is not already refilled (by doing a
probe access) and issues a transfer request to D-Unit. D-Unit moves cache line
from source Tile to destination Tile, sends reply to processor and a tag write
command to S-Unit to write new tags and cache line state in the requesting
cache.

Figure 34 Processing steps for read miss

2.6 Communication Network
Smart Memories Quads are equipped with a generic network interface which
enables them to communicate with each other and with peripherals such as
memory controllers. This section explains this network communication in more
details and provides more details about packet formats, flow control, virtual
channels and their priorities, as well as the broadcast/multicast capabilities of the
network.

2.6.1 Packets and flow control
In the Smart Memories network packets are divided into smaller sub-blocks
called flits (flow control digit) where each flit is 78-bit wide. Each packet falls into
three distinct categories: single-flit, two-flit and multi-flit. Single-flit and two-flit
packets are considered short packets while any packet which has more than two
flits is considered a large packet. Hence flits are divided into four different
categories: Head, Tail, Body and Head_Tail. There is also a Null flit type defined
which means that no flit is transmitted over the interface. Each flit carries a three
bit flit type and a three bit virtual channel number in addition to the payload.
Figure 35 shows the possible formats of the flit payloads.

 Page 62

Figure 35 Flit payload formats

Packet exchange over the network is controlled by an explicit credit-based flow
control mechanism; after each flit is consumed / switched by the upstream
network interface, an explicit credit is sent back to the downstream network
interface. Whenever the available credit is lower than the length of the packet to
be sent, the packet is stalled and the interface waits for more credits before it is
able to transmit again.

Figure 36 and Figure 37 show all the different packet formats exchanged over
the network. Figure 36 shows the common fields in the packet headers, while
Figure 37 shows the fields that differ from one packet type to other. These fields
are described in the following table.

Field Bits Description

Broadcast mask 71-69 Used by the network switches / routers. Indicates
whether and how the packet should be broadcasted
to more than one destination

Destination 68-64 Destination address of the packet

Source 63-59 Source address of the packet

Message Type 58-54 Type of message

USHR Index 53-47 USHR entry which contains information of this
request

MSHR Index 53-47 MSHR entry which contains information of this
request

Quad ID 51-47 ID of the Quad which this request is sent on its
behalf

 Page 63

MC MSHR Index 53-47 Memory Controller MSHR entry which contains
information of this request

Opcode 46-41 Memory Opcode (load, store or TIE opcode)

Miss Type 46-44 Cache miss type (read, write, upgrade)

Line State 46-45 Cache line state (Invalid, Shared, Exclusive or
Modified)

Action 46-44 Coherence action (Read, Read Exclusive, Invalidate)

Byte Mask 40-37 Byte mask for stores, used when doing direct, un-
cached memory accesses

Size, Line Size 40-44 Size of the data block in the packet, in bytes (used
for long packets only)

Wakeup Type 40 Type of wakeup: reader wakeup or writer wakeup

Wait Bit Adjust 40 Indicates whether there are more waiting processors
on this synchronization operation

Is FIFO 39 Indicates whether the access was a remote FIFO
access

FIFO Error 38 FIFO Error signal returned by the remote FIFO

FIFO Full 37 FIFO Full signal returned by the remote FIFO

Data Flag 43 Indicates that upgrade miss brings new data along
with ownership

Requestor 53-32 Tile ID, processor ID and port ID of the requesting
processor

I/D 32 Port ID for the request (instruction/data)

Address 31-0 Address which the request goes to (in case of long
packets, the address is start address of the block)

Data 31-0 Write data for write requests, or read data for read
replies

Table 10 Packet header fields

 Page 64

Figure 36 Common fields for headers (used by all packets)

Figure 37 Fields that differ from one packet type to other. Bit 0 is where header
flit ends and the next flit starts.

2.6.2 Virtual channels
Smart Memories network supports eight independent virtual channels. Virtual
channel assignment for different requests/replies over the network can be
configured within the Quads and memory controllers. Virtual channels support a
very flexible priority scheme: for each virtual channel, an 8-bit mask indicates
which other virtual channels can block it. For example, setting this mask to
8’b0000_0011 for virtual channel two indicates that it can be blocked by virtual
channels zero and one, or in other words, virtual channels zero and one have
priority over virtual channel two. Appropriate care is taken such that no channel
can block itself.

Table 11 displays the current assignment of request/replies to virtual channels
and their priorities. Note that there are some unused virtual channels within the
system. VC0 is reserved for emergency messages.

 Page 65

VC Message Types Blocked by

0 Reserved -

1 Coherence replies, cache refills,
writebacks, DMA (Gather/Scatter)
replies, wake up notifications, Off-
Tile memory accesses, Sync miss

-

2 Coherence requests, cache misses,
DMA (Gather/Scatter) requests,
reply to off-tile memory accesses

VC1

3 Cancel VC1

4 None -

5 None -

6 None -

7 None -

Table 11 Virtual channel assignments

The priority masks need to be initialized with appropriate values both in the
network interfaces of Quads and memory controllers as well as intermediate
switches and routers.

2.6.3 Broadcast / Multicast over network
Smart Memories network provides some basic facilities for broadcasting or
multicasting packets to multiple receivers. For example, when canceling an
outstanding synchronization operation, a Quad needs to broadcast the cancel
message to all memory controllers. To enforce coherence, a memory controller
needs to send a coherence message to all Quads except the one originating the
cache miss. The broadcast/multicast features of the network allows network
interfaces to send out a single request rather than generating separate requests
for all desired destinations.

Three most significant bits of the packet header are used to specify
broadcast/multicast. First bit, CCBroadcast, is used by memory controllers and
indicates that the packet needs to be sent to all Quads. Second bit,
MCBroadcast, used by Quads and indicates that the message has to be

 Page 66

broadcasted to all memory controllers3. The third bit, ExceptDest, makes an
exception for the node indicated by destination address. For example, if a
memory controller sets these bits to value 3’b101 with the destination address
set to 5’d1, the request is sent to all Quads except Quad 1. If needed, a packet
can be broadcasted to all Quads and to all memory controllers by setting both
CCBroadcast and MCBroadcast flags. Note that ExceptDest flag is effective only
if one of the previous two flags is used.

2.7 Memory Controller
The Memory Controller is another configurable controller shared among Quads.
It acts as the next level of system hierarchy above Quads, and provides access
to main memory and support for memory protocols. Examples of the latter are
enforcement of coherence invariance among the Quads and provision of
transactional memory properties.

The Memory Controller communicates with Quads and via a generic network
interface and accesses main memory through a dedicated memory interface. A
Smart Memories system can be configured to have more than one memory
controller. In such systems, each memory controller is in charge of a separate
memory bank and memory addresses are interleaved between banks.

Since all Quads send requests to a memory controller, it naturally acts as the
serialization point between them, which is important for implementing memory
protocols such as coherence. Similar to a Quad’s protocol controller, the Memory
Controller supports a set of basic operations and implements protocols via
combinations of these operations.

2.7.1 Architecture
Overall architecture of the memory controller is shown in Figure 38. Basic
operational units are light gray and state storage structures are dark gray.
Operational units are distinguished by the type of requests that they handle. C-
Req and C-Rep units are dedicated to cache misses and coherence operations.
The U-Req/Rep unit handles DMA operations and un-cached accesses to off-
chip memory. The Sync Unit stores synchronization misses and replays
synchronization operations whenever a wake up notification is received.
Operation of each of these units is described below.

3 Quads and memory controllers are distinguished by the MSB of their address: all memory
controllers have the MSB of their ID set to one, while all Quads have the MSB of their ID set to
zero.

 Page 67

Figure 38 Architecture of memory controller

2.7.2 C-Req / C-Rep units
These two units handle cache miss and coherence operations. They basically
integrate the request tracking and serialization, state monitoring and necessary
data movements required for handling cache miss operations in one place. In
general, memory accesses that require a form of coordination between Quads,
such as cache misses in a cache coherent system or commit of transaction
modifications in a transactional memory system, are handled by these two units.

The network interface delivers Quad requests to C-Req unit and Quad replies to
C-Rep unit. Quad requests start their processing at C-Req unit. Similar to
protocol controller, each incoming request is first checked against outstanding
requests and is accepted only if there is no conflict. Outstanding request
information is stored in the Miss Status Holding Register (MSHR) structure which
has an associative lookup port to facilitate access based on memory block
address. If no serialization is required and there is no conflicting request already
outstanding, an incoming request is accepted by C-Req and is placed in MSHR.
In case of a collision, a request is placed in the Wait Queue structure and is
considered again when the colliding request in the MSHR completes.

When a memory request requires state information from other Quads to be
collected or the state information in other Quads to be updated, C-Req unit
commands the network interface to send appropriate requests to other Quads in

 Page 68

the system, except the one that sent the original request. For example, in case of
a cache miss request, caches of other Quads have to be searched to see if there
is a modified copy of the cache line. Similarly, when committing the speculative
modifications of a transaction, these modifications have to be broadcast to all
other running transactions and hence made visible to them. Network interface
has basic capability of broadcasting or multicasting packets to multiple receivers
and is discussed in the next section. C-Req unit also communicates with the
memory interface to initiate memory read/write operations when necessary.

The C-Rep unit collects replies from Quads and updates the MSHR structure
accordingly. Replies from Quads might bring back memory blocks (e.g. cache
lines) and are placed in the line buffers associated with each MSHR entry. After
the last reply is received and based on the collected state information, C-Rep
decides how to proceed. In cases where a memory block has to be returned to
the requesting Quad (for example when replying to a cache miss), it also
decides whether to send the memory block received from main memory or the
one received from other Quads.

2.7.3 U-Req/Rep unit
This unit handles direct accesses to main memory. It is capable of performing
single word read/write operation on the memory (un-cached memory accesses
from processors) or block read/writes (DMA accesses from DMA channels). It
has an interface to the Memory Queue structure and places memory read/write
operations in the queue after it receives them from the network interface. After
completion of the memory operation, it asks the network interface to sent back
replies to the Quad that sent the original request.

2.7.4 Sync unit
As discussed in the earlier sections, Smart Memories utilizes a fine-grain
synchronization protocol that allows processors to report unsuccessful
synchronization attempts to memory controllers, also known as synchronization
misses. When the state of the synchronization location changes, a wakeup
notification is sent to memory controller and the failing request is retried on behalf
of the processor. The Sync Unit is in charge of storing all the synchronization
misses and attempting replay operations after wakeup notifications are received.

Information about synchronization misses is stored in the Sync Queue structure.
Sync Queue is sized such that each processor in the system has its own entry.4
When a synchronization miss is received, its information is recorded in the Sync
Queue. When a wakeup notification is received for a specific address, the next
processor which has an outstanding synchronization miss on that address is
removed from Sync Queue and a replay request is sent to appropriate Quad to
replay the synchronization operation.

4 Each processor can have at most one synchronization miss outstanding.

 Page 69

The Sync Unit also handles Cancel requests received by the network interface.
Cancel requests attempt to erase a synchronization miss from a specific
processor if it exists in the Sync Queue. The Sync Unit invalidates the Sync
Queue entry associated with the processor and sends a Cancel Reply message
back to the Quad which sent the Cancel request.

2.7.5 Interfaces
The Memory Controller is equipped with a generic network interface which
enables it to communicate with Quads in the system. It also has a generic
memory interface and memory queue structure to perform read and write
operations to memory. Network interface of the memory controller is essentially
the same as the protocol controller network interface, as discussed in a previous
section. It has separate transmit and receive blocks which are connected to
input/output pins. It is capable of sending short and long packets and has basic
broadcast capabilities which are discussed in more detail in the next section.

Memory interface is a generic 64-bit wide interface to a memory back that is
operated by Memory Queue structure. When a unit needs to access main
memory, it places its read/write request into the Memory Queue and the reply is
returned to the issuing unit after memory operation is complete. Requests inside
the queue are guaranteed to complete in the order in which they are placed in
the queue and are never re-ordered with respect to each other. Block read/write
operations are always broken intro 64-bit wide operations by the issuing units
and are then placed inside the Memory Queue structure.

 Page 70

3 Transactional Coherence and Consistency
As described in Section 1 parallel programming is complicated and error-prone.
The goal of the TCC project has been to develop easy-to-use and high-
performance parallel systems using transactional memory (TM) technology. With
TM, programmers simply declare that code blocks operating on shared data
should execute as atomic and isolated transactions with respect to all other code.
Concurrency control is the responsibility of the system. Hence, the focus of the
TCC project has been on the development of programming models for TM-based
software development and on the development of TM systems (hardware,
runtime system, compiler). The basic concepts of transactional memory and TCC
are described in Section 1.3, the following sections highlight the major extensions
and accomplishments of the TCC effort.

3.1 Scalable TCC Architecture
The basic TCC architecture described in Section 1.3 and [21] provides support
for transactional execution that performs well for small-scale, bus-based systems
with 8 to 16 processors. However, given the ever-increasing transistor densities,
large-scale multiprocessors with more than 16 processors on a single board or
even a single chip will soon be available. As more processing elements become
available, programmers should be able to use the same programming model for
configurations of varying scales. Hence, TM is of long-term interest only if it
scales to large-scale multiprocessors.

We have developed the first scalable, non-blocking implementation of TM [46].
Using continuous transactions, we can implement a single coherence protocol
and provide non-blocking synchronization, fault isolation, and a simple to
understand consistency model. The basis for this work is a directory-based
implementation of the Transactional Coherence and Consistency (TCC) model
that defines coherence and consistency in a shared memory system at
transaction boundaries. Unlike other TM architectures, TCC detects conflict only
when a transaction is ready to commit in order to guarantee livelock-freedom
without intervention from user-level contention managers. It is also unique in its
use of lazy data versioning which allows transactional data into the system
memory only when a transaction commits. This provides a higher degree of fault
isolation between common case transactions. To make TCC scalable, we used
directories to implement three techniques: a) parallel commit with a two-phase
protocol for concurrent transactions that involve data from separate directories;
b) write-back commit that communicates addresses, but not data, between nodes
and directories; c) all address and data communication for commit and conflict
detection only occurs between processors that may cache shared data.

The new architecture for TCC hardware is non-blocking and implements
optimistic concurrency control in scalable hardware using directories. The
directory implementation reduces commit and conflict detection overheads using
a two phase commit scheme for parallel commit and writeback caches. The
directory also acts as a conservative filter that reduces commit and conflict

 Page 71

detection traffic across the system. We have demonstrated that the proposed TM
architecture scales efficiently to 64 processors in a distributed shared-memory
(DSM) environment for both scientific and commercial workloads. Speedups with
32 processors range from 11 to 32 and for 64 processors, speedups range from
16 to 57. Commit overheads and interference between concurrent transactions
are not significant bottlenecks, less than 5% of execution time on 64 processors.
The organization and operation of the scalable TCC architecture were presented
in the 13th International Conference on High Performance Computer Architecture.

3.2 Virtualizing Transactional Memory Hardware
For TM to become useful to programmers and achieve widespread acceptance, it
is important that transactions are not limited to the physical resources of any
specific hardware implementation. TM systems should guarantee correct
execution even when transactions exceed scheduling quanta, overflow the
capacity of hardware caches and physical memory, or include more independent
nesting levels than what the hardware supports. In other words, TM systems
should transparently virtualize time, space, and nesting depth. While recent
application studies have shown that the majority of transactions will be short-lived
and will execute quickly with reasonable hardware resources, the infrequent
long-lived transactions with large data sets must also be handled correctly and
transparently.

Existing HTM proposals are incomplete with respect to virtualization. None of
them supports nesting depth virtualization, and most do not allow context
switches or paging within a transaction (TCC, LTM, LogTM). UTM and VTM
provide time and space virtualization but require complex hardware and firmware
to manage overflow data structures in memory and to facilitate safe sharing
among multiple processors. Since long-lived transactions are not expected to be
the common case, such a complex and inflexible approach is not optimal.

In this work, we developed the first comprehensive study of TM virtualization that
covers all three virtualization aspects: time, space, and nesting depth. We
proposed eXtended Transactional Memory (XTM), a software-based system that
builds upon virtual memory to provide complete TM virtualization without complex
hardware [43]. When a transaction exceeds hardware resources, XTM evicts
data to virtual memory at the granularity of pages. XTM uses private copies of
overflowed pages to buffer memory updates until the transaction commits and
snapshots to detect interference between transactions. On interrupts, XTM first
attempts to abort a young transaction, swapping out transactional state only
when unavoidable. We demonstrated that XTM allows transactions to survive
cache overflows, virtual memory paging, context switches, thread migration, and
extended nesting depths.

XTM can be implemented on top of any of the hardware transactional memory
architectures. The combination is a hybrid TM system that provides the
performance advantages of a hardware implementation without resource
limitations. XTM supports transactional execution at page granularity in the same

 Page 72

manner that page-based DSM systems provide cache coherence at page
granularity. Unlike page-based DSM, XTM is a backup mechanism utilized only
in the uncommon case when hardware resources are exhausted. Hence, the
overheads of software-based virtualization can be tolerated without a
performance impact on the common case behavior. Compared to hardware-
based virtualization, XTM provides flexibility of implementation and lower cost. In
the base design, XTM executes a transaction either fully in hardware (no
virtualization) or fully in software through page-based virtual memory. Conflicts
for overflowed transactions are tracked at page granularity. If virtualization is
frequently invoked, these characteristics can lead to large overheads for
virtualized transactions. To reduce the performance impact, we also developed
two enhancements to the base XTM system. XTM-g allows an overflowed
transaction to store data both in hardware caches and in virtual memory in order
to reduce the overhead of creating private page copies. Further extension, XTM-
e, allows conflict detection at cache line granularity, even for overflowed data in
virtual memory, in order to reduce the frequency of rollbacks due to false sharing.
XTM-g and XTM-e require limited hardware support, which is significantly simpler
than the support necessary for hardware-based virtualization in VTM or UTM.
XTM-g and XTM-e perform similar to hardware-based schemes like VTM, even
for the most demanding applications.

Overall, this work described and analyzed the major tradeoffs in virtualization for
transactional memory. Its major contributions are: a) We proposed XTM, a
software-based system that is the first to virtualize time, space, and nesting
depth for transactional memory. XTM builds upon virtual memory and provides
transactional execution at page granularity. b) We developed two enhancements
to XTM that reduce the overheads of page-based virtualization: XTM-g that
allows gradual overflow of data to virtual memory and XTM-e that supports
conflict detection at cache line granularity. c) We provided the first quantitative
evaluation of TM virtualization schemes for a wide range of application scenarios.
We demonstrated that XTM and its enhancements can match the performance of
hardware virtualization schemes like VTM or TM systems that use serialization to
handle resource limitation. Overall, we established that a software, page-based
approach provides an attractive solution for transparent TM virtualization.

3.3 Hardware/Software Interface for Transactional Memory
Several proposed systems implement transactional memory in hardware (HTM)
using different techniques for transactional state buffering and conflict detection.
At the instruction set level, HTM systems provide only a couple of instructions to
define transaction boundaries and handle nested transactions through flattening.
While such limited semantics have been sufficient to demonstrate HTM’s
performance potential using simple benchmarks, they fall short of supporting
several key aspects of modern programming languages and operating systems
such as transparent library calls, conditional synchronization, system calls, I/O,
and runtime exceptions. Moreover, the current HTM semantics are insufficient to
support recently proposed languages and runtime systems that build upon

 Page 73

transactions to provide an easy-to-use concurrent programming model. For HTM
systems to become useful to programmers and achieve widespread acceptance,
it is critical to carefully design expressive and clean interfaces between
transactional hardware and software before we delve further into HTM
implementations.

In this work, we defined a comprehensive instruction set architecture (ISA) for
hardware transactional memory [22, 23]. The architecture introduces three basic
mechanisms: (1) two phase transaction commit, (2) support for software handlers
on transaction commit, violation, and abort, and (3) closed- and open-nested
transactions with independent rollback. Two-phase commit enables user-initiated
code to run after a transaction is validated but before it commits in order to
finalize tasks or coordinate with other modules. Software handlers allow runtime
systems to assume control of transactional events to control scheduling and
insert compensating actions. Closed nesting is used to create composable
programs for which a conflict in an inner module does not restrict the
concurrency of an outer module. Open nesting allows the execution of system
code with independent atomicity and isolation from the user code that triggered it.
The proposed mechanisms require a small set of ISA resources, registers and
instructions, as a significant portion of their functionality is implemented through
software conventions. This is analogous to function call and interrupt handling
support in modern architectures, which is limited to a few special instructions
(e.g., jump and link or return from interrupt), but rely heavily on well-defined
software conventions.

We demonstrated that the three proposed mechanisms are sufficient to support
rich functionality in programming languages and operating systems including
transparent library calls, conditional synchronization, system calls, I/O, and
runtime exceptions within transactions. We also argue that their semantics
provide a solid substrate to support future developments in TM software
research. We describe practical implementations of the mechanisms that are
compatible with proposed HTM architectures. Specifically, we presented the
modifications necessary to properly track transactional state and detect conflicts
for multiple nested transactions. Using execution-driven simulation, we evaluate
I/O and conditional synchronization within transactions. Moreover, we explore
performance optimizations using nested transactions.

Overall, this work is an effort to revisit concurrency support in modern instruction
sets by carefully balancing software flexibility and hardware efficiency. Our
specific contributions are: a) We propose the first comprehensive instruction set
architecture for hardware transactional memory that introduces support for two-
phase transaction commit; software handlers for commit, violation, and abort;
and closed- and open-nested transactions with independent rollback. b) We
demonstrate that the three proposed mechanisms provide sufficient support to
implement functionality such as transparent library calls, conditional
synchronization, system calls, I/O, and runtime exceptions within transactions.
No further concurrency control mechanisms are necessary for user or system

 Page 74

code. c) We implement and quantitatively evaluate the proposed ISA. We
demonstrate that nested transactions lead to 2.2x performance improvement for
SPECjbb2000 over conventional HTM systems with flat transactions. We also
demonstrate scalable performance for transactional I/O and conditional
scheduling.

3.4 High Level Programming with Transactional Memory
A complete transactional environment must consider both hardware support and
programming model issues. Specifically, we believe a transactional memory
system should have certain key features: it should provide a programming
language model with implicit transactions, strong atomicity, and demonstrate a
scalable multiprocessor implementation.

To understand why this is important, let us consider the alternatives to these
features:

Explicit versus implicit: Some proposals require an explicit step to make locations
or objects part of a transaction, while other proposals make the memory
operations’ behavior implicit on the transactional state. Implicit
transactions require either compiler or hardware support. Older proposals
often required explicit instructions or calls to treat specific locations or
objects as transactional; however, most proposals now allow existing code
to run both transactionally and non-transactionally based on the context.
Requiring explicit transactional operations prevents a programmer from
composing existing non-transactional code to create transactions.
Programmers need to create and maintain transaction-aware versions of
existing non-transactional code in order to reuse it.

Weak atomicity versus strong atomicity: The atomicity criteria defines how

transactional code interacts with non-transactional code. In proposals with
weak atomicity, transactional isolation is only guaranteed between code
running in transactions, which can lead to surprising and non-deterministic
results if non-transactional code reads or writes data that is part of a
transaction’s read or write set [39]. For example, non-transactional code
may read uncommitted data from the transaction’s write set and non-
transactional writes to the transaction’s read set may not cause violations.
In proposals with strong atomicity, non-transactional code does not see
the uncommitted state of transactions and updates to shared locations by
non-transactional code violate transactions, if needed, to prevent data
races. From a programming model point of view, strong atomicity makes it
easier to reason about the correctness of programs because transactions
truly appear atomic with respect to the rest of the program. However, most
software implementations of transactional memory have only guaranteed
weak atomicity as a concession to performance. Recently, some hardware
and hybrid proposals that support unlimited transaction sizes have also
only offered weak atomicity. The problem is that programs written for one

 Page 75

atomicity model are not guaranteed to work on the other; for a
transactional program to be truly portable, it has to be written with a
specific atomicity model in mind, potentially hindering its reuse on other
systems.

Library versus programming language: Some proposals treat transactions simply

as a library, while others integrate transactions into the syntax of the
programming language. There are many issues with not properly
integrating concurrency primitives with programming language semantics
as shown in recent work on the Java Memory Model and threads in C and
C++. Clear semantics are necessary to allow modern optimizing compilers
to generate safe yet efficient code for multi-processor systems as well as
perform transactional memory specific optimizations.

Uniprocessor versus multiprocessor: Some proposals require a uniprocessor

implementation for correctness, while others take advantage of
multiprocessor scaling. Since trends indicate a move to multiprocessors,
new programming languages should make it easy to exploit these
resources. In order to properly evaluate transactional memory as an
abstraction to simplify parallel programming, it is important for proposals to
provide a multiprocessor implementation.

In this work, we introduce the Atomos transactional programming language,
which is the first to include implicit transactions, strong atomicity, and a scalable
multiprocessor implementation [47]. Atomos is derived from Java, but replaces its
synchronization and conditional waiting constructs with transactional alternatives.
The Atomos conditional waiting proposal is tailored to allow efficient
implementation with the limited transactional contexts provided by hardware
transactional memory. There have been several proposals from the software
transactional memory community for conditional waiting primitives that take
advantage of transactional conflict detection for efficient wakeup. By allowing
programmers more control to specify their conditional dependencies, Atomos
allows the general ideas of these earlier proposals to be applied in both hardware
and software transactional memory environments.

Atomos supports open-nested transactions, which we found necessary for
building both scalable application programs and virtual machine implementations.
Open nesting allows a nested transaction to commit before its parent transaction.
This allows for parent transactions to be isolated from possible contention points
in a more general way than other proposals like early release, which only allows
a program to remove a location from its read set to avoid violations.

In this work, we make the following specific contributions: a) We introduce
Atomos, the first programming language with strongly atomic transactional
memory and a scalable multiprocessor implementation. b) We introduce the

 Page 76

watch and retry statements to allow fine-grained conditional waiting, which is
more scalable than other coarse-grained proposals in hardware environments
with limited transactional contexts. c) We introduce the open statement to create
nested transactions that commit independently from their parent. d) We introduce
the concept of violation handlers to transactional memory to allow virtual machine
implementations to handle expected violations without rolling back.

In our evaluation, implicit transactions and strong atomicity are supported by the
Transactional Coherence and Consistency (TCC) hardware transactional
memory model. The scalable implementation is built on the design of the
underlying Jikes Research Virtual Machine (Jikes RVM) and Transactional
Coherence and Consistency protocol. Using this environment, we evaluate the
relative performance of Atomos and Java to demonstrate the value of
programming with transactions. We show not only savings from the removal of
lock overhead, but speedup from optimistic concurrency. While Jikes RVM and
TCC are well suited to supporting Atomos, there is nothing about Atomos that
fundamentally ties it to these systems. Atomos’s toughest requirement on the
underlying transactional memory system is strong atomicity, which lends itself
more naturally toward a hardware transactional memory-based implementation.
Although there has been recent research into strongly atomic software
transactional memory systems, native code poses a further challenge to their use
by Atomos. Typically these systems prohibit the calling of native code within
transactions, significantly restricting the flexibility of the program. Atomos
leverages the Jikes RVM scheduler thread architecture in its implementation of
conditional waiting, but the design could be adapted to other timer-based
schedulers.

 Page 77

4 References

1. D. A. Patterson and J. L. Hennessy, “Computer Architecture: A Quantitative

Approach”, 4th edition, pp. 2-4, Morgan Kaufman, 2007.

2. M. Horowitz, W. Dally, “How Scaling Will Change Processor Architecture,”

IEEE International Solid States Circuits Conference (ISSCC) Digest of

Technical Papers, pp. 132-133, February 2004.

3. V. Agarwal et al., “Clock rate versus IPC: The end of the road for conventional

microarchitectures,” in Proceedings of the International Symposium Computer

Architecture (ISCA), pp. 248-259, June 2000.

4. V. Srinivasan et al., “Optimizing pipelines for power and performance”,

Proceedings of the International Symposium on Microarchitecture (Micro), pp.

333-344, December 2002.

5. A. Hartstein, T. Puzak, “Optimum power/performance pipeline depth”,

Proceedings of the International Symposium on Microarchitecture (Micro), pp.

117- 125, December 2003.

6. K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang, "The Case

for a Single-Chip Multiprocessor," Proceedings of International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pp. 2-11, October 1996.

 Page 78

7. L. Hammond, B. Hubbert , M. Siu, M. Prabhu , M. Chen , and K. Olukotun,

“The Stanford Hydra CMP,” IEEE Micro, pp. 71-84, March-April 2000.

8. M. Taylor et al., “Evaluation of the Raw Microprocessor: An Exposed-Wire-

Delay Architecture for ILP and Streams,” Proceedings of the 31st

International Symposium Computer Architecture (ISCA), p. 2, June 2004.

9. J. H. Ahn , W. J. Dally , B. Khailany , U. J. Kapasi , A. Das, “Evaluating the

Imagine Stream Architecture,” Proceedings of the 31st International

Symposium Computer Architecture (ISCA), p. 14, June 2004.

10. C. Kozyrakis, D. Patterson, "Vector Vs Superscalar and VLIW Architectures

for Embedded Multimedia Benchmarks," Proceedings of the International

Symposium on Microarchitecture (Micro), pp. 283-293, December 2002.

11. L. Barroso et al., “Piranha: A Scalable Architecture Based on Single-Chip

Multiprocessing,” Proceedings of the International Symposium Computer

Architecture (ISCA), pp. 282-293, June 2000.

12. P. Kongetira, K. Aingaran, K. Olukotun, "Niagara: A 32-Way Multithreaded

Sparc Processor," IEEE Micro, vol. 25, no. 2, pp. 21-29, March–April 2005.

13. D. Pham et al., “The Design and Implementation of a First-Generation CELL

Processor,” IEEE International Solid States Circuits Conference (ISSCC)

Digest of Technical Papers, pp. 184-185, February 2005.

 Page 79

14. R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM POWER5 Chip: A Dual-Core

Multithreaded Processor,” IEEE Micro, vol. 24, no. 2, pp. 40–47, March–April

2004.

15. T. Takayanagi et al., “A Dual-Core 64b UltraSPARC Microprocessor for

Dense Server Applications,” IEEE International Solid States Circuits

Conference (ISSCC) Digest of Technical Papers, pp. 58-59, February 2004.

16. N. Sakran et al., “The Implementation of the 65nm Dual-Core 64b Merom

Processor,” IEEE International Solid States Circuits Conference (ISSCC)

Digest of Technical Papers, pp. 106-107, February 2007.

17. B. Khailany et al., "Imagine: Media Processing with Streams," IEEE Micro,

vol. 21, no. 2, pp. 35-46, Mar.-Apr. 2001.

18. W. Lee et al., “Space-time scheduling of instruction-level parallelism on a raw

machine,” Proceedings of International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS), pp. 46-57,

October 1998

19. W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A Language for

Streaming Applications,” Proceedings of the International Conference on

Compiler Construction, pp. 179-196, April 2002.

20. M. Herlihy and J.E.B. Moss, “Transactional memory: Architectural support for

lock-free data structures,” Proceedings of International Symposium Computer

Architecture (ISCA), pp. 289-300, 1993.

 Page 80

21. L. Hammond et al., “Transactional Memory Coherence and Consistency,”

Proceedings of International Symposium Computer Architecture (ISCA), p.

102, June 2004.

22. A. McDonald et al., "Architectural Semantics for Practical Transactional

Memory," Proceedings of International Symposium Computer Architecture

(ISCA), June 2006.

23. A. McDonald et al., "Transactional Memory: The Hardware-Software

Interface," IEEE Micro, vol. 27, no. 1, January/February 2007.

24. W. Baek et al., “The OpenTM Transactional Application Programming

Interface,” Proceedings of International Conference on Parallel Architecture

and Compilation Techniques (PACT), pp. 376-387, September 2007.

25. K. Mai et al., “Architecture and Circuit Techniques for a Reconfigurable

Memory Block,” International Solid States Circuits Conference, February

2004.

26. J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M. Horowitz, C.

Kozyrakis, “Comparing Memory Systems for Chip Multiprocessors”,

Proceedings of International Symposium Computer Architecture (ISCA), June

2007.

27. J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, C. Kozyrakis,

“Comparative Evaluation of Memory Models for Chip Multiprocessors”,

 Page 81

accepted to ACM Transactions on Architecture and Code Optimization

(TACO).

28. S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Models: A

Tutorial,” IEEE Computer, 29(12), pp. 66–76, Dec. 1996.

29. B. Lewis and D. J. Berg, “Multithreaded Programming with Pthreads,”

Prentice Hall, 1998.

30. E.L. Lusk and R.A. Overbeek, "Use of Monitors in FORTRAN: A Tutorial on

the Barrier, Self-scheduling DO-Loop, and Askfor Monitors," Tech. Report No.

ANL-84-51, Rev. 1, Argonne National Laboratory, June 1987.

31. N. Jayasena, “Memory Hierarchy Design for Stream Computing,” PhD thesis,

Stanford University, 2005.

32. I. Buck et al., "Brook for GPUs: Stream computing on graphics hardware,"

ACM Transactions on Graphics, vol. 23, no. 3, August 2004, pp. 777–786.

33. K. Fatahalian et al., "Sequoia: Programming The Memory Hierarchy,"

Supercomputing Conference, November 2006.

34. F. Labonte et al., "The Stream Virtual Machine," Proceedings of International

Conference on Parallel Architecture and Compilation Techniques (PACT), pp.

267-277, September 2004.

35. P. Mattson et al., "Stream Virtual Machine and Two-Level Compilation Model

for Streaming Architectures and Languages," Proceedings of the International

 Page 82

Workshop on Languages and Runtimes, in conjunction with OOPSLA'04,

October 2004.

36. T. Harris et al., "Transactional Memory: An Overview," IEEE Micro, vol. 27,

no. 3, pp. 8-29, May-June 2007.

37. M.P. Herlihy, "A methodology for implementing highly concurrent data

structures," Proceedings of Symposium on Principles and Practice of Parallel

Programming (PPoPP), pp. 197–206, March 1990.

38. K.E. Moore et al., ‘‘LogTM: Log-Based Transactional Memory,’’ Proceedings

of International Symposium on High-Performance Computer Architecture

(HPCA), pp. 254-265, 2006.

39. Colin Blundell et al., ‘‘Deconstructing Transactional Semantics: The Subtleties

of Atomicity,” Workshop on Duplicating, Deconstructing, and Debunking

(WDDD), June 2005.

40. N. Shavit and D. Touitou, ‘‘Software Transactional Memory,’’ Proceedings

Symposium Principles of Distributed Computing (PODC), pp. 204-213, 1995.

41. P. Damron et al., ‘‘Hybrid Transactional Memory,’’ Proceedings of

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), pp. 336-346, 2006.

 Page 83

42. S. Kumar et al., ‘‘Hybrid Transactional Memory,’’ Proceedings of Symposium

on Principles and Practice of Parallel Programming (PPoPP), pp. 209-220,

2006.

43. J.W. Chung et al., "Tradeoffs in Transactional Memory Virtualization,"

Proceedings of International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), October 2006.

44. B. Saha, A. Adl-Tabatabai, and Q. Jacobson, ‘‘Architectural Support for

Software Transactional Memory,’’ Proceedings of the International

Symposium on Microarchitecture (Micro), pp. 185-196, 2006.

45. A. Shriraman et al., “Hardware Acceleration of Software Transactional

Memory,” Proceedings of the 1st ACM SIGPLAN Workshop on Languages,

Compilers, and Hardware Support for Transactional Computing, June 2006.

46. H. Chafi et al., "A Scalable, Non-blocking Approach to Transactional

Memory," Proceedings of International Symposium on High-Performance

Computer Architecture (HPCA), February 2007.

47. B. D. Carlstrom et al., "The ATOMOS Transactional Programming Language,"

Proceedings of the Conference on Programming Language Design and

Implementation (PLDI), June 2006.

 Page 84

DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1 cy

AFRL/RVIL
Kirtland AFB, NM 87117-5776 2 cys

Official Record Copy
AFRL/RVSE/Jeffrey Scott 1 cy

 Page 85

	Introduction
	Cache-Coherent Shared Memory Model
	Streaming Memory Model
	Transactional Memory Model
	Memory System Features

	Smart Memories Implementation
	Memory System Protocols
	Coherence protocol
	Transactional Coherence and Consistency
	Fast, fine-grain synchronization protocol

	Processor
	Overview of Tensilica LX
	Interfacing Tensilica processor to Smart Memories
	Special Memory Access Instructions
	Pre-Defined and VLIW Processor Extensions
	Processor Extension for Recovery from Missed Speculation

	Memory Mat and Crossbar
	Memory mat organization
	Data Array
	Control Array
	PLA block
	Pointer logic
	Guard and Condition Logic
	Crossbar and Inter-Mat Communication Network (IMCN)
	Crossbar
	Inter-Mat Communication Network (IMCN)

	Examples
	A 2-way set associative cache
	Transactional cache

	Load/Store Unit (LSU)
	Interfaces
	Tile memory configuration
	Memory map and address translation
	Access translation
	Communication with protocol controller

	Reconfigurable Protocol Controller
	Architecture
	Request tracking and serialization (T-Unit)
	State Updates (S-Unit)
	Data Movements (D-Unit)
	Interfaces
	Peripherals
	Example: MESI coherence

	Communication Network
	Packets and flow control
	Virtual channels
	Broadcast / Multicast over network

	Memory Controller
	Architecture
	C-Req / C-Rep units
	U-Req/Rep unit
	Sync unit
	Interfaces

	Transactional Coherence and Consistency
	Scalable TCC Architecture
	Virtualizing Transactional Memory Hardware
	Hardware/Software Interface for Transactional Memory
	High Level Programming with Transactional Memory

	References
	front matter-2007-1209.pdf
	Final Report

